Skip to main content
Log in

Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Mýtina maar is the first known Quaternary maar in the Bohemian Massif. Based on the results of Mrlina et al. (J Volcanol Geother Res 182:97–112, 2009), a multiparametric geophysical (electrical resistivity tomography, gravimetry, magnetometry, seismics) and geological/petrochemical research study had been carried out. The interpretation of the data has provided new information about the inner structure of the volcanic complex: (1) specification of the depth of post-volcanic sedimentary fill (up to ~100 m) and (2) magnetic and resistivity signs of one (or two) hidden volcanic structures interpreted as intrusions or remains of a scoria cone. The findings at the outer structure of the maar incorporate the (1) evidence of circular fracture zones outside the maar, (2) detection and distribution of volcanic ejecta and tephra-fall deposits at the surface, and (3) indications from electrical resistivity tomography and gravity data in the area between the Mýtina maar and Železná hůrka scoria cone, interpreted as a palaeovalley, filled by volcaniclastic rocks, and aligned along the strike line (NW–SE) of the Tachov fault zone. These findings are valuable contributions to extend the knowledge about structure of maar volcanoes in general. Because of ongoing active magmatic processes in the north-east part of the Cheb Basin (ca. 15–30 km north of the investigation area), the Mýtina maar-diatreme volcano and surroundings is a suitable key area for research directed to reconstruction of the palaeovolcanic evolution and assessment of possible future hazard potential in the Bohemian Massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32

    Article  Google Scholar 

  • Barde-Cabusson S, Bolós X, Pedrazzi D, Lovera R, Serra G, Marti J, Casas A (2013) Electrical resistivity tomography revealing the internal structure of monogenetic volcanoes. Geophys Res Lett 40:2544–2549. doi:10.1002/grl.50538

    Article  Google Scholar 

  • Barnes I, McCoy GA (1979) Possible role of mantle-derived CO2 in causing two “phreatic” explosions in Alaska. Geology 7:434–435

    Article  Google Scholar 

  • Blaikie TN, Ailleres L, Cas RAF, Betts PG (2012) Three dimensional potential field modelling of a multi-vent maar-diatreme—The Lake Coragulac maar, Newer Volcanics Province, south-eastern Australia. J Volcanol Geother Res 235–236:70–83. doi:10.1016/j.jvolgeores.2012.05.002

    Article  Google Scholar 

  • Blaikie TN, Ailleres L, Betts PG, Cas RAF (2014) Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: examples of maar-diatremes, Newer Volcanics Province, southeastern Australia. J Geophys Res Solid Earth 119:3857–3878. doi:10.1002/2013JB010751

    Article  Google Scholar 

  • Bolós X, Barde-Cabusson S, Pedrazzi D, Martí J, Casas A, Himi M, Lovera R (2012) Investigation of the inner structure of La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, Spain). J Volcanol Geother Res 247–248:37–48. doi:10.1016/j.jvolgeores.2012.08.003

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Strauch G (2009) Earthquake swarms in non-volcanic regions: what fluids have to say. Geophys Res Lett 36:L17309. doi:10.1029/2009GL039615

    Article  Google Scholar 

  • Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Nový Kostel focal zone in the western Eger Rift, Czech Republic. Chem Geol 290:163–176

    Article  Google Scholar 

  • Brunner I, Friedel S, Jacobs F, Danckwardt E (1999) Investigation of the Tertiary maar structure using three-dimensional resistivity imaging. Geophys J Int 136:771–780

    Article  Google Scholar 

  • Büchel G, Lorenz V (1993) Syn- and post-eruptive mechanism of the Alaskan Ukinrek Maars in 1977. Lect Notes Earth Sci 49:15–60

    Article  Google Scholar 

  • Bücker C, Wonik T, Schulz R (2003) Physikalische Eigenschaften einer tertiären Maarfüllung—Ergebnisse von Bohrlochmessungen in den Forschungsbohrungen Baruth (Sachsen). Z Angew Geol 49:43–51

    Google Scholar 

  • Cassidy J, France SJ, Locke CA (2007) Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. J Volcanol Geother Res 159:153–163. doi:10.1016/j.jvolgeores.2006.06.007

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prosp 52:379–398

    Article  Google Scholar 

  • De la Cruz-Reyna S, Yokoyama I (2011) A geophysical characterization of monogenetic volcanism. Geofis Int 50(4):465–484

    Google Scholar 

  • Diele LM (2000) Der Pulvermaar-Vulkan: Struktur und Massenbilanzen auf der Basis von geophysikalischen Messungen und Volumenkalkulation. International Maar Conference, Daun/Vulkan-eifel, Germany, Terra Nostra 106

  • Dobeš M, Hercog F, Mazáč O (1986) Die geophysikalische Untersuchung der hydrogeologischen Strukturen im Cheb—Becken. Sbor Geol ved 21:117–158

    Google Scholar 

  • Evans W, Bergfeld D, McGimsey RG, Hunt AG (2009) Diffuse gas emissions at the Ukinrek Maars, Alaska: implications for magmatic degassing and volcanic monitoring. Appl Geochem 24:527–535. doi:10.1016/j.apgeochem.2008.12.007

    Article  Google Scholar 

  • Fiala J, Vejnar Z (1997) The Cheb-Dylen Crystalline Unit, relations to the Moldanubian Zone. In: Vrana S, Stedra V (eds) Geologic model of Western Bohemia related to the KTB borehole in Germany. J Geol Sci Geology 47:56–57

  • Fiala J, Vejnar Z (2004) The lithology, geochemistry, and metamorphic gradation of the crystalline basement of the Cheb (Eger) Tertiary Basin, Saxothuringian Unit. Bull Geosci 79:41–52

    Google Scholar 

  • Fischer T, Horálek J, Hrubcová P, Vavryčuk V, Bräuer K, Kämpf H (2014) Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophysics 611:1–27. doi:10.1016/j.tecto.2013.11.001

    Article  Google Scholar 

  • Flechsig C, Fabig T, Rücker C, Schütze C (2010) Geoelectrical investigations in the Cheb Basin/W Bohemia: an approach to evaluate the near-surface conductivity structure. Stud Geophys Geod 54:417–437

    Article  Google Scholar 

  • Galadi-Enriquesz E, Kroemer E, Loth G, Pürner T, Raum G, Teipel U, Rohrmüller J (2009) Erdgeschichte des Oberpfälzer Waldes. Geologische Karte 1:150 000, Augsburg. ISBN: 978-3-936385-55-7

  • Geissler WH, Kämpf H, Bankwitz P, Bankwitz E (2004) Das quartäre Tephra-Tuff-Vorkommen von Mýtina (Südrand des westlichen Eger-Grabens/Tschechische Republik): Indikationen für Ausbruchs- und Deformationsprozesse. Z Geol Wiss 32:31–54

    Google Scholar 

  • Geissler WH, Kämpf H, Seifert W, Dulski P (2007) Seismic and petrological studies of the lithosphere in the earthquake swarm region Vogtland/NW-Bohemia, Central Europe. J Volcanol Geother Res 159:33–69

    Article  Google Scholar 

  • Geshi N, Nemeth K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano, Japan. J Volcanol Geoth Res 201:30–38. doi:10.1016/j.jvolgeores.2010.11.012

    Article  Google Scholar 

  • Günther T (2004) Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements. Dissertation, University of Mining and Technology Freiberg. http://nbn-resolving.de/urn:nbn:de:swb:105-4152277

  • Günther T, Rücker C, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—Part II: inversion. Geophys J Int 166:506–517

    Article  Google Scholar 

  • Horalek J, Fischer T (2008) Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: just what we know (a review). Stud Geophys Geod 52:455–478

    Article  Google Scholar 

  • Kämpf H, Bräuer K, Schumann J, Hahne K, Strauch G (2013) CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): characterisation (13C, 3 He/4 He) and quantification of diffuse and vent CO2 emissions. Chem Geol 339:81–83

    Article  Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geother Res 7:11–37

    Article  Google Scholar 

  • Kopecky L (1978) Neoidic taphrogenic evolution and young alkaline volcanism of the Bohemian Massif. J Geol Sci 31:91–107

    Google Scholar 

  • Kvaček Z, Teodoridis V (2007) Tertiary macrofloras of the Bohemian Massif: a review with correlations within Boreal and Central Europe. Bull Geosci 82:383–408

    Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Lochmann Z (1961) Železná hůrka (Eisenbühl). Anthropozoikum 11:69–81

    Google Scholar 

  • Loera HL, Aranda-Gómez JJ, Arzate JA, Molina-Garza SR (2008) Geophysical surveys of the Joya Honda maar (México) and surroundings; volcanic implications. J Volcanol Geother Res 170:135–152

    Article  Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geother Res 159:285–312

    Article  Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geother Res 150:4–32

    Article  Google Scholar 

  • Lorenz V, Suhr P (2012) On differences and similarities between maar-diatreme volcanoes and explosive collapse calderas. In: Arentsen K, Németh K, Smid E (eds) 4th International Maar conference a multidisciplinary congress on monogenetic volcanism, Auckland New Zealand 2012, abstract volume 58–59. ISBN: 978-1-877480-15-7

  • Mastin L, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geother Res 186:10–21

    Article  Google Scholar 

  • Mrlina J, Kämpf H, Geissler WH, van den Bogaard P (2007) Proposed Quaternary maar structure at the Czech/German boundary between Mýtina and Neualbenreuth (western Eger Rift, Central Europe): geophysical, petrochemical and geochronological indications. Z Geol Wiss 35:213–230

    Google Scholar 

  • Mrlina J, Kämpf H, Kroner C, Mingram J, Stebich M, Brauer A, Geissler WH, Kallmeyer J, Matthes H, Seidl M (2009) Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J Volcanol Geother Res 182:97–112

    Article  Google Scholar 

  • Nicollin F, Gibert D, Beauducel F, Boudon G, Komorowski JC (2006) Electrical tomography of LaSoufrie`re of Guadeloupe Volcano: field experiments, 1D inversion and qualitative interpretation. Earth Planet Sci Lett 244:709–724

    Article  Google Scholar 

  • Nowell DAG, Jones MC, Pyle DM (2006) Episodic quaternary volcanism in France and Germany. J Quat Sci 21:645–675. doi:10.1002/jqs.1005

    Article  Google Scholar 

  • Peterek A, Reuther CD, Schunk R (2011) Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift. Z Geol Wiss 5(6):335–365

    Google Scholar 

  • Phillips WJ (1974) The dynamic emplacement of cone sheets. Tectonophysics 24:69–84

    Article  Google Scholar 

  • Pirrung M, Büchel G, Lorenz V, Treutler HC (2008) Posteruptive development of the Ukinrek East Maar since its eruption in 1977 A.D. in the periglacial area of south-west Alaska. Sedimentology 55:305–334

    Article  Google Scholar 

  • Proft E (1894) Kammerbühl und Eisenbühl, die Schichtvulkane des Egerer Beckens. Jahrb Geol Reichsanstalt Wien 44:25–85

    Google Scholar 

  • Revil A, Finizola A, Piscitelli S, Rizzo E, Ricci T, Crespy A, Angeletti B, Balasco M, Barde Cabusson S, Bennati L, Bolève A, Byrdina S, Carzaniga N, Di Gangi F, Morin J, Perrone A, Rossi M, Roulleau E, Suski B (2008) Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high resolution electric resistivity tomography coupled with self-potential, temperature, and soil CO2 diffuse degassing measurements. J Geophys Res 113:B07207. doi:10.1029/2007JB005394

    Google Scholar 

  • Rohrmüller J (2003) Die Forschungsbohrung Bayerhof—die Erkundung eines tertiären Maars im Steigerwald, Oberpfalz (NE Bayern). Geol Bav 107:215–220

    Google Scholar 

  • Ross PS, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar–diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geother Res 201:253–271

    Article  Google Scholar 

  • Rücker C, Günther T, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography—Part I: modeling. Geophys J Int 166:495–505

    Article  Google Scholar 

  • Šantrůćek P, Králík F, Kvičinský Z, Opletal M (1991) Geological map, scale 1:50,000, Czech Geological Survey, 1991

  • Schmidt A, Nowaczyk N, Kämpf H, Schüller I, Flechsig C, Jahr T (2013) Origin of magnetic anomalies in the large Ebersbrunn diatreme, W Saxony, Germany. Bull Volcanol 75:766. doi:10.1007/s00445-013-0766-6

    Article  Google Scholar 

  • Schulz R, Buness H, Gabriel G, Pucher R, Rolf C, Wiederhold H, Wonik T (2005) Detailed investigation of preserved maar structures by combined geophysical surveys. Bull Volcanol 68:95–106

    Article  Google Scholar 

  • Schwarzkopf LM, Tobschall HJ (1997) Železná Hůrka (Eisenbühl)—volcanology and geochemistry of a quaternary scoria and lapilli cone in the Ohře (Eger) Rift. J Geosci 42:73

    Google Scholar 

  • Skácelová Z, Rapprich V, Valenta J, Hartvich F, Šrámek J, Radon M, Gazdová R, Nováková L, Kolínsky P, Pécskay Z (2010) Geophysical research on structure of partly eroded maar volcanoes: miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic). J Geosci 55:333–345

    Google Scholar 

  • Stebich M, Mingram J, Mrlina J, Kämpf H (2009) The Mýtina Maar, west Bohemia, Czech Republic—Preliminary results from ongoing sedimentological and palynological investigations. Asociación Geologica Argentina, Publicationes especiales Series Dn No 12, pp 118–119

  • Stettner G (1999) Geologische Karte Bayern, Blatt 6040/6041 Neualbenreuth/Märing 1:25,000, Bayrisches Geologisches Landesamt Augsburg

  • Tonica J, Opletal M, Cicha I, Cihelk M (1998) Geologica Mapa ČR, 11-32 Lázne Kynžvart 1:25,000. Český geologichy ústav Praha

  • Udphuay S, Günther T, Everett ME, Warden RR, Briaud JL (2011) Three dimensional resistivity tomography in extreme coastal terrain amidst dense cultural signals: application to cliff stability assessment at the historic D-Day site. Geophys J Int 185:201–220

    Article  Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  Google Scholar 

  • Ulrych J, Ackerman L, Balogh K, Hegner E, Jelínek E, Pécskay Z (2013) Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K–Ar ages, major/trace element and Sr–Nd isotopic data. Geochemistry 73:429–450

    Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114. doi:10.1130/G33411.1

    Article  Google Scholar 

  • Weinlich FH, Bräuer K, Kämpf H, Strauch G, Tesař J, Weise SM (1999) An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim Cosmochim Acta 63:3653–3671

    Article  Google Scholar 

  • White JW, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geother Res 201:1–29

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to the German Research Foundation (DFG) for funding this project (FL271/13 and KA902/16). Gravity measurements were partly supported by the project CzechGeo/EPOS, Grant No. LM2010008. Thanks to R. Naumann, D. Berger, F. Körting, H. Liep, M. Ospald, V. Polák, I. Schüller and J. Wondrak. At last, we would like to express our gratitude towards K. Nemeth, our editor, and A. Pittari and J. van Otterloo, our reviewers, for helpful suggestions that improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Flechsig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flechsig, C., Heinicke, J., Mrlina, J. et al. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic). Int J Earth Sci (Geol Rundsch) 104, 2087–2105 (2015). https://doi.org/10.1007/s00531-014-1136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1136-0

Keywords

Navigation