Skip to main content
Log in

Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Magnetite-bearing mylonitic garnet–micaschists close to the major suture between the Baltica and Iapetus terranes (Seve Nappe Complex, Scandinavian Caledonides) show very high anisotropy of magnetic susceptibility (AMS) with corrected degree of anisotropy (P′) up to 4.8. Three different magnetic fabric types can be distinguished. They correspond to protomylonite (type I, P′ < 2), mylonite (type II, 2 < P′ < 3), and ultramylonite (type III, P′ > 3), respectively. The orientation of the ellipsoid axes from all applied magnetic fabric methods in this study is similar with shallow dips of the metamorphic foliation toward WSW and subhorizontal, mostly NW–SE trending mineral lineation. Differences between subfabrics were minimized under high shear strain as all markers tend to align parallel with the shear plane. The very high anisotropies and mostly oblate ellipsoid shapes of type III correlate with high magnetic susceptibility (k mean up to 55 × 10−3 SI units) and are related to the concentration of magnetite aggregates with shape-preferred orientation. They show a distinct field dependence of magnetic susceptibility of up to 10% in the k max-direction. We attribute this field dependence to a “memory” of high strains in the domain walls of the crystals acquired during synkinematic magnetite growth during shear zone fabric development at temperatures of 550–570°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andreasson PG, Svenningsen OM, Albrecht L (1998) Dawn of Phanerozoic orogeny in the North Atlantic tract; evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. GFF 120:159–172

    Article  Google Scholar 

  • Aranguren A, Cuevas J, Tubía J (1996) Composite magnetic fabrics from S-C-mylonites. J Struct Geol 18:863–869

    Article  Google Scholar 

  • Bascou J, Raposo MIB, Vauchez A, Egydio-Silva M (2002) Titanohematite lattice-preferred orientation and magnetic anisotropy in high-temperature mylonites. Earth Planet Sci Lett 198:77–92

    Article  Google Scholar 

  • Bergman S, Sjöström H (1994) The Storsjön–Edsbyn Deformation Zone, central Sweden. Res Report Geol Survey Sweden, p 46

  • Bergmüller F, Barlocher C, Geyer B, Grieder M, Heller F, Zweifel P (1994) A torque magnetometer for measurements of the high-field anisotropy of rocks and crystals. Meas Sci Technol 5:1466–1470

    Article  Google Scholar 

  • Cañon-Tapia E (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys Earth Planet Int 94:149–158

    Article  Google Scholar 

  • Cañon-Tapia E (2001) Factors controlling the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics 340:117–131

    Article  Google Scholar 

  • De Wall H (2005) Die Anisotropie der magnetischen Suszeptibilität—eine Methode zur Gefügeanalyse. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 155:287–298

    Google Scholar 

  • Ferré E, Gleizes G, Djouadi MT, Bouchez JL, Ugodulunwa FXO (1997) Drainage and emplacement of magmas along an inclined transcurrent shear zone: petrophysical evidence from a granite-charnockite pluton (Rahama, Nigeria). In: Bouchez JL et al (ed) Granite: from segregation of melt to emplacement fabrics, Petrol. Struct. Geol. Kluwer Acad, Norwell, pp 253–273

  • Ferré E, Teyssier C, Jackson M, Thill JW, Rainey ESG (2003) Magnetic susceptibility anisotropy: a new petrofabric tool in migmatites. J Geophy Res 108:2068. doi:10.1029/2002JB001790

  • Gee DG, Fossen H, Henriksen N, Higgins AK (2008) From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31:44–51

    Google Scholar 

  • Greiling RO, Garfunkel Z, Zachrisson E (1998) Evolution of the orogenic wedge in the central Scandinavian Caledonides and its interaction with the foreland lithosphere. GFF 120:181–190

    Article  Google Scholar 

  • Housen BA, van der Pluijm BA, Essene EJ (1995) Plastic behaviour of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario Grenville Province. J Struct Geol 17:265–278

    Article  Google Scholar 

  • Hrouda F (1971) The mimetic fabric of magnetite in some foliated granodiorites as indicated by magnetic anisotropy. Earth Planet Sci Lett 11:381–384

    Article  Google Scholar 

  • Hrouda F (1980) Magnetocrystalline anisotropy of rocks and massive ores: a mathematical model study and its fabric implications. J Struct Geol 2:459–462

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F (2002) Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys J Int 150:715–723

    Article  Google Scholar 

  • Hrouda F, Chlupácová M, Mrázová S (2006) Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks. Phys Earth Planet Inter 154:323–336

    Article  Google Scholar 

  • Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67

    Article  Google Scholar 

  • Jelínek V (1993) Theory and measurement of the anisotropy of isothermal remanent magnetization of rocks. Travaux Géophysiques 37:124–134

    Google Scholar 

  • Kletetschka G, Wasilewski PJ (2002) Grain size limit for SD hematite. Phys Earth Planet Inter 129:173–179

    Article  Google Scholar 

  • Kligfield R, Lowrie W, Pfiffner OA (1982) Magnetic properties of deformed oolitic limestones from the Swiss Alps: the correlation of magnetic anisotropy and strain. Eclogae geologicae Helvetiae 75:127–157

    Google Scholar 

  • Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162

    Article  Google Scholar 

  • Mamtani MA, Piazolo S, Greiling RO, Kontny A, Hrouda F (2011) Process of magnetite fabric development during granite deformation. Earth Planet Sci Lett 308:77–89

    Article  Google Scholar 

  • Martin-Hernandez F, Hirt AM (2001) Separation of ferromagnetic and paramagnetic anisotropies using a high-field torsion magnetometer. Tectonophysics 337:209–221

    Article  Google Scholar 

  • Mattsson HJ, Elming S-Å (2001) Magnetic fabrics and palaeomagnetism of the Storsjön-Edsbyn deformation zone, central Sweden. Precambrian Res 107:265–281

    Article  Google Scholar 

  • Moskowitz BM, Jackson M, Kissel C (1998) Low-temperature magnetic behaviour of titanomagnetites. Earth Planet Sci Lett 157:141–149

    Article  Google Scholar 

  • Özdemir Ö, Dunlop DJ (1999) Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes. Earth Planet Sci Lett 165:229–239

    Article  Google Scholar 

  • Parés JM, van der Pluijm BA (2002) Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT-AMS). Geophys Res Lett 29(24):2215. doi:10.1029/2002GL015459

    Google Scholar 

  • Pokorny J, Suza P, Hrouda F (2004) Anisotropy of magnetic susceptibility of rocks measured in variable weak magentic fields using the KLY-4S Kappabridge. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications. Geol. Soc. London (spec. Publ.), pp 69–76

  • Richter C, van der Pluijm BA (1994) Separation of paramagnetic and ferromagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123

    Article  Google Scholar 

  • Robinson P, Heidelbach F, Hirt AM, McEnroe SA, Brown LL (2006) Crystallographic-magnetic correlations in single-crystal haemo-ilmenite: new evidence for lamellar magnetism. Geophys J Int 165:17–31

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Siemes H, Schaeben H, Rosière CA, Quade H (2000) Crystallographic and magnetic preferred orientation of hematite in banded iron ores. J Struct Geol 22:1747–1759

    Article  Google Scholar 

  • Sillanpää J, Annersten H, Stigh J (1987) Prograde and retrograde metamorphism in the Seve-Köli-Nappe Complex in the Kittelfjället area, central Swedish Caledonides. Uppsala University Department of Mineralogy and Petrology Research Report No. 43, p 18

  • Stephenson A (1994) Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys Earth Planet Inter 82:49–53

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, p 215

  • Trouw RAJ (1973) Structural geology of the Marsfjällen area, Caledonides of Västerbotten, Sweden. Sveriges Geologiska Undersökning C 689, p 155

  • Uyeda S, Fuller MD, Belshé JC, Girdler RW (1963) Anisotropy of magnetic susceptibility of rocks and minerals. J Geophys Res 68:279–291

    Article  Google Scholar 

  • Vahle C, Kontny A (2005) The use of field dependence of AC susceptibility for the interpretation of magnetic mineralogy and magnetic fabrics in the HSDP-2 basalts, Hawaii. Earth Planet Sci Lett 238:110–129

    Article  Google Scholar 

  • van Roermund H (1985) Eclogites of the Seve Nappe, central Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and related areas. Wiley, Chichester, pp 873–886

    Google Scholar 

  • Williams PF, Zwart HJ (1977) A model for the development of the Seve-Köli Caledonian nappe complex. In: Saxena SZ, Bhattacharji SE (eds) Energetics of geological processes. Springer, New York, pp 169–187

    Google Scholar 

  • Zachrisson E (1991) Bedrock map 23E Sipmeke SV-SO, 1:50 000. Sveriges Geologiska Undersökning Ai 73, Uppsala

  • Zák J, Kabele P (2011) A new approach to modeling perpendicular fabrics in porphyritic plutonic rocks using the finite element method. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-011-0649-z

  • Zwart HJ (1975) Structure and metamorphism of the Seve-Köli Nappe Complex (Scandinavian Caledonides) and its implications concerning the formation of metamorphic nappes. In: Belliere J, Duchesne JC (eds) Geologie des Domains Cristallins. Societe géologique de Belgique, Liéges, pp 129–144

    Google Scholar 

Download references

Acknowledgments

We thank Frantisek Hrouda, Agico Ltd., Brno, and Ben van der Plujim, University of Michigan, for helpful discussions and use of their respective laboratories. Florian Heidelbach from BGI in Bayreuth is thanked for his support on the EBSD analysis. Thanks to Philipp Lied for help with drawing part of the figures. We are grateful to the DFG for funding this project (KO1514/5). Jiri Zák and an anonymous reviewer are thanked for their constructive comments. This paper is dedicated to Frantisek Hrouda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kontny.

Appendix

Appendix

See Table 5.

Table 5 Low-field magnetic susceptibility and AMS data of all single specimen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontny, A., Engelmann, R., Grimmer, J.C. et al. Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides). Int J Earth Sci (Geol Rundsch) 101, 671–692 (2012). https://doi.org/10.1007/s00531-011-0713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0713-8

Keywords

Navigation