Skip to main content

Advertisement

Log in

Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low δ13C values measured on carbonates (−41 to −32‰ V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. δ18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Afanasenkov AP, Nikishin AM, Obukhov AN (2005) The system of late Jurassic carbonate buildups in the northern Shatsky Swell (Black Sea). Dokl Earth Sci 403:696–699

    Google Scholar 

  • Akhmetzhanov AM, Ivanov M, Kenyon NH, Mazzini A (eds) (2007) Deep-water cold seeps, sedimentary environments and ecosystems of the Black and Tyrrhenian Seas and Gulf of Cadiz. IOC Technical Series No. 72, UNESCO, Paris

    Google Scholar 

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203

    Article  Google Scholar 

  • Aloisi G, Drews M, Wallmann K, Bohrmann G (2004) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet Sci Lett 225:347–363

    Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Article  Google Scholar 

  • Bohrmann G, Ivanov MK, Foucher JP, Spiess V, Bialas J, Greinert J, Weinrebe W, Abegg F, Aloisi G, Artemov Y, Blinova V, Drews M, Heidersdorf F, Krabbenhöft A, Klaucke I, Krastel S, Leder T, Polikarpov I, Saburova M, Schmale O, Seifert R, Volkonskaya A, Zillmer M (2003) Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo Marine Lett 23:239–249

    Article  Google Scholar 

  • Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179

    Article  Google Scholar 

  • Damm E, Schauer U, Rudels B, Haas C (2007) Excess of bottom-released methane in an Arctic shelf sea polynya in winter. Cont Shelf Res 27:1692–1701

    Article  Google Scholar 

  • Deuser WG (1972) Late-Pleistocene and Holocene history of the Black Sea as indicated by stable-isotope studies. J Geophys Res 77:1071–1077

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ, Raphael RA, Gonzales AG (1962) Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic study. Nature 193:739–742

    Article  Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates. Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. U.S.G.S., Reston

    Google Scholar 

  • Grasshoff K, Erhardt M, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. AGU, Washington DC, pp 99–113

    Google Scholar 

  • Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas-bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68:4335–4345

    Article  Google Scholar 

  • Hartley G, Mucci A (1996) The influence of pCO2 on the partitioning of magnesium in calcite overgrowths precipitated from artificial seawater at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 60:315–324

    Article  Google Scholar 

  • Hay BJ, Arthur MA, Dean WA, Neff ED, Honjo S (1991) Sediment deposition in the Late Holocene abyssal Black Sea with climatic and chronological implications. Deep Sea Res 38:S1211–S1235

    Google Scholar 

  • Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade? Earth Sci Rev 61:149–179

    Article  Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    Article  Google Scholar 

  • Holtvoeth J, Wagner T, Schubert CJ (2003) Organic matter in river-influenced continental margin sediments: the land-ocean and climate linkage at the Late Quaternary Congo Fan (ODP Site 1075). Geochem Geophys Geosyst 4:1109 doi:1110.1029/2003GC000590

    Article  Google Scholar 

  • Ivanov MK, Limonov AF, van Weering TCE (1996) Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar Geol 132:253–271

    Article  Google Scholar 

  • Kempe S, Liebezeit G, Duman M, Asper V (2001) Extrusion: the formation mechanism for the presumed “turbidites” of the deep Black Sea. Senckenb Marit 31:11–16

    Article  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  Google Scholar 

  • Kralj D, Kontrec J, Brecevic L, Falini G, Nöthig-Laslo V (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chem Eur J 10:1647–1656

    Article  Google Scholar 

  • Lamy F, Arz HW, Bond G, Bahr A, Pätzold J (2006) Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21:PA1008

    Article  Google Scholar 

  • Lumsden DS (1979) Discrepancy between thin-section and x-ray estimates of dolomite in limestone. J Sediment Petrol 49:429–436

    Google Scholar 

  • Major C, Ryan W, Lericolais G, Hajdas I (2002) Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. Mar Geol 190:19–34

    Article  Google Scholar 

  • Major CO, Goldstein SL, Ryan WBF, Lericolais G, Piotrowski AM, Hajdas I (2006) The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quat Sci Rev 25:2031–2047

    Article  Google Scholar 

  • Manheim FT, Chan KM (1974) Interstitial waters of Black Sea sediments: new data and review. In: Degens ET, Ross D (eds) The Black Sea—geology, chemistry and biology. AAPG, Tulsa, pp 155–180

    Google Scholar 

  • Mazzini A, Ivanov MK, Parnell J, Stadnitskaia A, Cronin BT, Poludetkina E, Mazurenko L, van Weering TCE (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol 212:153–181

    Article  Google Scholar 

  • Mazzini A, Ivanov M, Nermoen A, Bahr A, Bohrmann G, Svensen H, Planke S (2007) Complex plumbing systems in the near subsurface: geometries of authigenic carbonates from Dolgovskoy Mound (Black Sea) constrained by analogue experiments. Mar Pet Geol. doi:10.1016/j.marpetgeo.2007.10.002

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  Google Scholar 

  • Murray JW, Top Z, Özsoy E (1991) Hydrographic properties and ventilation of the Black Sea. Deep Sea Res 38:663–689

    Article  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: comparison of ANME-I and ANME-II-communities. Environ Microbiol 7:98–106

    Article  Google Scholar 

  • Naehr T, Rodriguez NM, Bohrmann G, Paull CK, Botz R (2000) Methane-derived authigenic carbonates associated with gas hydrate decomposition and fluid venting above the Blake Ridge Diapir. Proc Ocean Drilling Program Sci Results 164:285–300

    Google Scholar 

  • Nikishin AM, Korotaev MV, Ershov AV, Brunet M-F (2003) The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modelling. Sediment Geol 156:149–168

    Article  Google Scholar 

  • Öszoy E, Ünlüata Ü (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42:231–272

    Article  Google Scholar 

  • Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic composition of prokaryotic lipids as tracers of carbon cycling in divers settings. Chem Geol 195

  • Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS, Party TMS (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold seep carbonae crusts. Org Geochem 32:695–707

    Article  Google Scholar 

  • Pape T, Blumenberg M, Seifert R, Egorov VN, Gulin SB, Michaelis W (2005) Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 227:31–47

    Article  Google Scholar 

  • Peckmann J, Reimer A, Luth U, Luth C, Hansen BT, Heinicke C, Hoefs J, Reitner J (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  Google Scholar 

  • Pierre C, Rouchy J-M, Gaudichet A (2000) Diagenesis in the gas hydrate sediments of the Blake Ridge: mineralogy and stable isotope compositions of the carbonate and sulfide minerals. Proc Ocean Drilling Program Sci Results 164:139–146

    Google Scholar 

  • Popp BN, Sansone FJ, Rust TM, Meritt DA (1995) Determination of concentration and carbon isotopic composition of dissolved methane in sediments and nearshore waters. Anal Chem 67:405–411

    Article  Google Scholar 

  • Rank D, Öszoy E, Salihoglu I (1999) Oxygen-18, deuterium and tritium in the Black Sea and the Sea of Marmara. J Environ Radioact 43:231–245

    Article  Google Scholar 

  • Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V (2005a) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 227:18–30

    Article  Google Scholar 

  • Reitner J, Peckmann J, Reimer A, Schumann G, Thiel V (2005b) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51:66–79

    Article  Google Scholar 

  • Rodriguez NM, Paull CK, Borowski WS (2000) Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. Proc Ocean Drilling Program Sci Results 164:301–311

    Google Scholar 

  • Ross D, Degens ET (1974) Recent sediments of Black Sea. In: Degens ET, Ross D (eds) The Black Sea—geology, chemistry and biology. AAPG, Tulsa, pp 183–199

    Google Scholar 

  • Simoneit BRT (1977) The Black Sea, a sink for terrigenous lipids. Deep Sea Res 24:813–830

    Article  Google Scholar 

  • Sloan EDJ (1998) Clathrate hydrate of natural gases, 2nd edn. Marcel Dekker Inc., Publisher, New York

    Google Scholar 

  • Stadnitskaia A, Baas M, Ivanov M, van Weering TCE, Sinninghe Damsté JS (2003) Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea. Archaea 1:1–9

    Article  Google Scholar 

  • Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Baas M, van Weering TCE, Ivanov MK, Poludetkina E, Sinninghe Damsté JS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96

    Article  Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on hydrate ridge—unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85

    Article  Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers from ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Article  Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001a) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73:97–112

    Article  Google Scholar 

  • Thiel V, Peckmann J, Schmale O, Reitner J, Michaelis W (2001b) A new straight-chain hydrocarbon biomarker associated with anaerobic methane cycling. Org Geochem 32:1019–1023

    Article  Google Scholar 

  • Trimonis ES (1974) Some characteristics of carbonate sedimentation in Black Sea. In: Degens ET, Ross D (eds) The Black Sea—geology, chemistry and biology. AAPG, Tulsa, pp 279–295

    Google Scholar 

  • Versteegh GJM, Bosch H-J, de Leeuw JW (1997) Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org Geochem 27:1–13

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

Download references

Acknowledgments

We thank captain and crew of the R/V Professor Logachev for their excellent support while handling TV-grab and gravity coring during the TTR-15 cruise. We highly appreciate the help provided by many people, namely Christoph Vogt for doing the XRD measurements, Monika Segl for stable isotope measurements, Hella Buschhoff for CHN analyses and Hartmut Mai for running the SEM/EDX, Markus Elvert and Daniel Birgel for support during lipid biomarker analyses (all Univ. Bremen), Bettina Domeyer, Regina Surberg (IFM-GEOMAR) for retrieving and analysing pore water samples, Ellen Damm (AWI) for providing δ13C measurements on methane and Katja U. Heeschen (NOC, Southampton) for on-board gas sampling. δ18O measurements on interstitial water were performed by Manfred Schmitt (GCA, Sehnde), who is gratefully acknowledged. Janis Thal and Svenja Papenmeier (Univ. Bremen) provided very valuable support in the early stages of this research project. This paper has benefited from constructive reviews by Barbara Teichert and Giovanni Aloisi. This is contribution GEOTECH-286 of the R&D-programme GEOTECHNOLOGIEN funded by the German Ministry of Education and Research (BMBF) and the German Research Foundation (DFG), collaborative project METRO (grant 03G0604A). RCOM 0526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahr, A., Pape, T., Bohrmann, G. et al. Authigenic carbonate precipitates from the NE Black Sea: a mineralogical, geochemical, and lipid biomarker study. Int J Earth Sci (Geol Rundsch) 98, 677–695 (2009). https://doi.org/10.1007/s00531-007-0264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0264-1

Keywords

Navigation