Skip to main content

Advertisement

Log in

Mineral ballast and particle settling rates in the coastal upwelling system off NW Africa and the South Atlantic

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The ocean off NW Africa is the second most important coastal upwelling system with a total annual primary production of 0.33 Gt of carbon per year (Carr in Deep Sea Res II 49:59–80, 2002). Deep ocean organic carbon fluxes measured by sediment traps are also fairly high despite low biogenic opal fluxes. Due to a low supply of dissolved silicate from subsurface waters, the ocean off NW Africa is characterized by predominantly carbonate-secreting primary producers, i.e. coccolithophorids. These algae which are key primary producers since millions of years are found in organic- and chlorophyll-rich zooplankton fecal pellets, which sink rapidly through the water column within a few days. Particle flux studies in the Mauretanian upwelling area (Cape Blanc) confirm the hypothesis of Armstrong et al. (Deep Sea Res II 49:219–236, 2002) who proposed that ballast availability, e.g. of carbonate particles, is essential to predict deep ocean organic carbon fluxes. The role of dust as ballast mineral for organic carbon, however, must be also taken into consideration in the coastal settings off NW Africa. There, high settling rates of larger particles approach 400 m day−1, which may be due to a particular composition of mineral ballast. An assessment of particle settling rates from opal-production systems in the Southern Ocean of the Atlantic Sector, in contrast, provides lower values, consistent with the assumptions of Francois et al. (Global Biogeochem Cycles 16(4):1087, 2002). Satellite chlorophyll distributions, particle distributions and fluxes in the water column off NW Africa as well as modelling studies suggest a significant lateral flux component and export of particles from coastal shelf waters into the open ocean. These transport processes have implications for paleo-reconstructions from sediment cores retrieved at continental margin settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antia AN et al (2001) Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration. Global Biogeochem Cycles 15(4):845–862

    Article  Google Scholar 

  • Antoine D, Jean-Michel A, Morel A (1996) Ocean primary production: 2. Estimation at global scale from satellite (Coastal Zone Colour Scanner) chlorophyll. Global Biogeochem Cycles 10:57–69

    Article  Google Scholar 

  • Ariathurai R, Arulanandan K (1978) Erosion rates of cohesive soils. J Hydr Div ASCE 104(2):279–282

    Google Scholar 

  • Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model of organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res II 49:219–236

    Article  Google Scholar 

  • Barton ED et al (1998) The transition zone of the Canary Current upwelling region. Prog Oceanogr 41:455–504

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  Google Scholar 

  • Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep Sea Res II 49:237–251

    Article  Google Scholar 

  • Berger WH, Wefer G (1990) Export production: seasonality and intermittency, and paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 89:245–254

    Article  Google Scholar 

  • Berger WH, Smetacek V, Wefer G (1989) Ocean productivity and paleoproductivity : an overview. In: Berger WH, Smetacek V, Wefer G (eds) Productivity in the ocean: present and past. Wiley, New York, pp 1–34

    Google Scholar 

  • Blaas M, Dong C, Marchesiello P, McWilliams JC, Stolzenbach KD (2007) Sediment transport modeling on Southern Californian Shelves: A ROMS case study. Cont Shelf Res 27:832–853

    Article  Google Scholar 

  • Bory A, Newton PP (2000) Transport of airborne lithogenic material down through the water column in two contrasting regions of the eastern subtropical North Atlantic Ocean. Global Biogeochem Cycles 14(1):297–315

    Article  Google Scholar 

  • Bory A et al (2001) Downward particle flux within different productivity regimes off the Mauretanian upwelling zone (EUMELI program). Deep Sea Res II 48:2251–2282

    Article  Google Scholar 

  • Boyer TP, Stephens C, Antonov JI, Conkright ME, Locarnini RA, O’Brian TD, Garcia HE (2002) World Ocean Atlas 2001. Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 50, vol 1. U.S. Government Printing Office, Washington, DC, pp 1–165

    Google Scholar 

  • Carr M-E (2002) Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res II 49:59–80

    Article  Google Scholar 

  • Chen C-TA, Liu K-K, MacDonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemisty, international geosphere-biosphere programme book. Springer, Berlin, pp 53–97

    Google Scholar 

  • Davenport R, Neuer S, Helmke P, Perez-Marrero J, Llinás O (2002) Primary productivity in the northern Canary Islands region as inferred from SeaWiFS imagery. Deep Sea Res II 49:3481–3496

    Article  Google Scholar 

  • da Silva A, Young C, Levitus S (1994) Atlas of surface marine data 1994, vols. 1–5, NOAA Atlas NESDIS 6–10. US Government Printing Office, Washington, DC

  • de Menocal PB, Ruddiman WF, Pokras EM (1993) Influences of high- and low-latitude processes on African terrestrial climate: pleistocene eolian records from equatorial Atlantic ocean-drilling program site 663. Paleoceanography 8(2):209–242

    Article  Google Scholar 

  • Dierks AR, Asper VL (1987) In situ settling speeds of marine snow aggregates below the mixed layer: Black Sea and Gulf of Mexico. Deep Sea Res 44:385–398

    Article  Google Scholar 

  • Drake DE, Cacchione DA (1989) Estimates of the suspended sediment reference concentration (ca) and resuspension coefficient (γ0) from near-bed observations on the California shelf. Cont Shelf Res 9:51–64

    Article  Google Scholar 

  • Dugdale RC, Wilkerson FP, Minas HJ (1995) The role of a silicate pump in driving new production. Deep Sea Res 42(5):697–719

    Article  Google Scholar 

  • Fischer G, Wefer G (1996) Long-term observations of particle fluxes in the Eastern Atlantic: seasonality, changes of flux with depth and comparison with the sediment record. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin, pp 325–344

    Google Scholar 

  • Fischer G, Donner B, Ratmeyer V, Davenport R, Wefer G (1996a) Distinct year-to-year flux variations off Cape Blanc during 1988–1991: relationship to δ18O-deduced sea-surface temperatures and trade winds. J Mar Res 54:73–98

    Article  Google Scholar 

  • Fischer G, Neuer S, Wefer G, Krause G (1996b) Short-term sedimentation pulses recored with a fluorescence sensor and sediment traps at 900 m depth in the Canary Basin. Limnol Oceanogr 41(6):1354–1359

    Article  Google Scholar 

  • Fischer G, Kalberer M, Donner B, Wefer G (1999) Stable isotopes of pteropod shells as recorders of sub-surface water conditions: comparison with the record of G. ruber and measurements. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 191–206

    Google Scholar 

  • Fischer G, Ratmeyer V, Wefer G (2000) Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to Primary Production compiled from satellite radiometer data. Deep Sea Res 47(2):1961–1997

    Google Scholar 

  • Fischer G, Gersonde R, Wefer G (2002) Organic carbon, biogenic silica and diatom fluxes in the marginal winter sea–ice zone and in the Polar Front Region: interannual variations and differences in composition. Deep Sea Res II 49:1721–1745

    Article  Google Scholar 

  • Fischer G et al. (2003) Transfer of particles into the deep Atlantic and the global ocean: control of nutrient supply and ballast production. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: Reconstruction of material budgets and current systems. Springer, Berlin, pp 21–46

    Google Scholar 

  • Fischer G, Neuer S, Davenport R, Romero O, Ratmeyer V, Donner B, Freudenthal T, Meggers H, Wefer G (2007) Control of ballast minerals on organic carbon export in the Eastern Boundary Current System (EBCs) off NW Africa. In: Liu K K et al (eds) CMTT volume, Springer, Berlin

  • Fowler SW, Small LF (1972) Sinking rates of euphausiid fecal pellets. Limnol Oceanogr 17:293–296

    Article  Google Scholar 

  • Francois R, Honjo S, Krishfield R, Manganini S (2002) Factors controlling the flux of organic carbon in the bathypelagic ocean. Global Biogeochem Cycles 16(4):1087. doi:10.1029/2001GB001722

    Google Scholar 

  • Garcia M, Parker G (1991) Entrainment of bed sediment into suspension, J Hydr Eng 117(4):414–435

    Article  Google Scholar 

  • Hamm CE (2002) Interactive aggregation and sedimentation of diatoms and clay-sized lihtogenic material. Limnol Oceanogr 47(6):1790–1795

    Article  Google Scholar 

  • Hebbeln D, Marchant M, Wefer G (2000) Seasonal variations of the particle flux in the Peru-Chile current at 30°S under “normal” and El Nino conditions. Deep Sea Res II 47:2101–2128

    Article  Google Scholar 

  • Helmke P, Romero O, Fischer G (2005) Northwest African upwelling and its effect on off-shore organic carbon export to the deep sea. Global Biogeochem Cycles 19. doi:10.1029/2004GB002265

  • Hernández-Guerra A, Arístegui J, Cantón M, Nykjaer L (1993) Phytoplankton pigment patterns in the Canary Islands area as determined using Coastal Zone Colour Scanner data. Int J Remote Sensing 14(7):1431–1437

    Article  Google Scholar 

  • Honjo S, Doherty KW (1988) Large scale aperture time-series sediment traps; design, objectives, construction and application. Deep Sea Res 35:133–149

    Article  Google Scholar 

  • Honjo S, Manganini S J (1993) Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studies at 34°N 21°W and 48°N 21°W. Deep Sea Res I 40(1/2):587–607

    Article  Google Scholar 

  • Honjo S, Francois R, Manganini S, Dymond J, Collier R (2000) Particle fluxes to the interior of the Southern Ocean in the Western Pacific sector along 170°W. Deep Sea Res II 47:3521–3548

    Article  Google Scholar 

  • Ittekkot V (1993) The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO2 contents. Global Planet Change 8:17–25

    Article  Google Scholar 

  • Inthorn M, Mohrholz V, Zabel M (2006) Nepheloid layer distribution in the Benguela upwelling area offshore Namibia. Deep Sea Res I 53:1423–1438

    Article  Google Scholar 

  • Jahnke R (2003) Floor as a sediment trap: contributions to JGOFS from benthic flux studies. In: Final JGOFS conference in Washington DC, May 2003

  • Jickells TD et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  Google Scholar 

  • Karakas G et al (2006) High-resolution modelling of sediment erosion and particle transport across the NW African shelf. J Geophys Res 111(C06025). doi:10.1029/2005JC003296

  • Kaufman YJ et al (2005) Dust transport and deposition from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110. doi:10.1029/2003/JD004436

  • Klaas C, Archer DE (2002) Association of sinking organic matter with various types of ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles 16 (4):1116. doi:10.1029/2001GB001765

    Google Scholar 

  • Kremling K, Lentz U, Zeitzschel B, Schulz-Bull DE, Duinker JC (1996) New type of time-series sediment trap for the reliable collection of inorganic and organic trace chemical substances. Rev Scient Instr 67(12):4360–4363

    Article  Google Scholar 

  • Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994. NOAA Atlas NESDIS 3, vol 3: Nutrients, Department of Commerce, Washington DC

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34(2):267–285

    Article  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4(1):5–12

    Article  Google Scholar 

  • Milliman J et al (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline. Deep Sea Res I 46:1653–1669

    Article  Google Scholar 

  • Mittelstaedt E (1991) The ocean boundary along the northwest African coast. Prog Oceanogr 26:307–355

    Article  Google Scholar 

  • Müller PJ, Fischer G (2001) A 4-year sediment trap record of alkenones from the filamentous upwelling region off Cape Blanc, NW Africa and a comparison with distributions in underlying sediments. Deep Sea Res I 48:1877–1903

    Article  Google Scholar 

  • Müller PJ, Fischer G (2003) C37-alkenones as paleotemperature tool: fundamentals based in sediment traps and surface sediments from the South Atlantic Ocean. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer, Berlin, pp 167–193

    Google Scholar 

  • Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res I 40(3):425–444

    Article  Google Scholar 

  • Neuer S, Ratmeyer V, Davenport R, Fischer G, Wefer G (1997) Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term satellite derived pigment data and lateral sources. Deep Sea Res 44:1451–1466

    Article  Google Scholar 

  • Neuer S, Freudenthal T, Davenport R, Llinás O, Rueda M-J (2002) Seasonality of surface water properties and particle flux along a productivity gradient off NW Africa. Deep Sea Res II 49:3561–3576

    Article  Google Scholar 

  • Neuer S, Torres-Padron ME, Gelado-Caballeo MD, Rueda MJ, Hernandez-Brito J, Davenport R, Wefer G (2004) Dust deposition to the eastern subtropical North Atlantic gyre: Does ocean’s biogeochemistry respond? Global Biogeochemical Cycles 18. doi:10.1029/2004GB002228

  • Nowald N, Karakas G, Ratmeyer V, Fischer G, Schlitzer R, Davenport R, Wefer G (2006) Distribution and transport processes of marine particulate matter off Cape Blanc (NW-Africa): results from vertical camera profiles. Ocean Sci Disc 3:903–938

    Article  Google Scholar 

  • Passow U (2004) Switching perspectives: do mineral fluxes determine particulate organic fluxes or vice versa. Geochem, Geophys, Geosys 5(4): Q04002. doi:10.1029/2003GC000670

  • Pilskaln CH, Lehmann C, Padaun JB, Silver MW (1998) Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, California. Deep Sea Res II 45:1803–1837

    Article  Google Scholar 

  • Prospero JM (1996) The atmospheric transport of particles to the ocean. In: Ittekkot V et al (eds) Particle Flux in the Ocean, SCOPE. Wiley, Chichester, pp 19–52

    Google Scholar 

  • Ragueneau O et al (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365

    Article  Google Scholar 

  • Ramaswamy V, Gaye B (2006) Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean. Deep Sea Res I 53:271–293

    Article  Google Scholar 

  • Ratmeyer V, Fischer G, Wefer G (1999) Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: Implications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res II 46:1289–1337

    Article  Google Scholar 

  • Romero OE, Fischer G, Lange CB, Wefer G (2000) Siliceous phytoplankton of the western equatorial Atlantic: sediment traps and surface sediments. Deep Sea Res II 47:1939–1959

    Article  Google Scholar 

  • Romero OE, Lange CB, Wefer G (2002) Interannual variability (1988–1991) of siliceous phytoplankton fluxes off northwest Africa. J Plankton Res 24(10):1035–1046

    Article  Google Scholar 

  • Romero OE, Dupont L, Wyputta U, Jahns S, Wefer G (2003) Temporal variability of fluxes of eolian-transported freshwater diatoms, phytoliths, and pollen grains off Cape Blanc as reflection of land-atmosphere-ocean interactions in northwest Africa. J Geophys Res 108(C5):22/1–22/11

    Article  Google Scholar 

  • Rühlemann C, Müller PJ, Schneider RR (1999) Organic carbon and carbonate as paleoproductivity proxies: examples from high and low latititude productivity areas of the tropical Atlantic. In: Fischer G, Wefer G (eds) Proxies in paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 315–344

    Google Scholar 

  • Sarnthein M, Tetzlaff G, Koopmann B, Wolter K, Pflaumann U (1981) Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293:193–196

    Article  Google Scholar 

  • Schemainda R, Nehring D, Schulz S (1975) Ozeanologische Untersuchungen zum Produktionspotential der nordwestafrikanischen Wasserauftriebsregion 1970–1973. Geodätische Geophysikalische Veröff 4:1–88

    Google Scholar 

  • Scholten JC et al (2001) Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: the 230Th calibration. Deep Sea Res II 48:2383–2408

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404

    Article  Google Scholar 

  • Siegel DA, Granata TC, Michaels AF ,Dickey TD (1990) Mesoscale Eddy Diffusion, Particle Sinking, and the Interpretation of Sediment Trap Data. J Geophys Res 95(C4):5305–5311

    Article  Google Scholar 

  • Smith JD, McLean SR (1977) Spatially averaged flow over a wavy bed. J Geophys Res 82:1735–1746

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

  • Stephens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brian TD, Garcia HE (2002) World Ocean Atlas 2001. Volume 1: Temperature. In: Levitus S (eds) NOAA Atlas NESDIS 49. U.S. Government Printing Office, Washington, DC, pp 1–167

  • Stein R, Ten Haven HL, Littke R, Rullkötter J, Welte DH (1989) Accumulation of marine and terrigenous organic carbon at upwelling site 658 and non-upwelling Sites 657 and 659: Implications for the reconstruction of paleoenvironments in the eastern subtropical Atlantic through late Cenozoic times. Proc ODP Sci Results 108:361–386

    Google Scholar 

  • Takahashi K, Bé AWB (1984) Planktonic foraminfera: factors controlling sinking speeds. Deep Sea Res I (31):1477–1500

  • Tsunogai S, Noriki S (1991) Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of atmospheric carbon ? Tellus Ser A 43(2):256–266

    Article  Google Scholar 

  • Van Camp L, Nykjaer L, Mittelstadt E, Schlittenhardt P (1991) Upwelling and boundary circulation off Northwest Africa as depicted by infrared and visible satellite observations. Prog Oceanogr 26:357–402

    Article  Google Scholar 

  • Wefer G, Fischer G, Fütterer D, Gersonde R (1988) Seasonal particle flux in the Bransfield Strait, Antarctica. Deep Sea Res 35(6):891–898

    Article  Google Scholar 

  • Xu JP, Noble M, Eittreim SL (2002) Suspended sediment transport on the continental shelf near Davenport, California. Mar Geol 181:171–193

    Article  Google Scholar 

  • Yu EF, Francois R, Honjo S, Fleer AP, Manganini SJ, Rutgers van der Loeff MM, Ittekkot V (2001) Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa. Deep Sea Res I 48:865–889

    Article  Google Scholar 

  • Žarić S, Donner B, Fischer G, Mulitza S, Wefer G (2005) Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data. Mar Micropaleont 55:75–105

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the masters and crew of RV METEOR, RV POLARSTERN and RV POSEIDON for their competent assistance during the deployments and recoveries of the moorings. For logistical support, we are very much grateful to G. Ruhland. For laboratory analysis, we are indebted to V. Diekamp, M.Scholz and M. Klann and H. Buschhoff. We also like to thank the reviewers for helpful comments and the editors of this volume. A large number of data were collected during the SFB 261 programme conducted in the Atlantic Ocean (1989–2001) and we would like to thank the Deutsche Forschungsgemeinschaft for funding. This is publication of the Research Center Ocean Margins (RCOM), No. 519, funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, G., Karakas, G., Blaas, M. et al. Mineral ballast and particle settling rates in the coastal upwelling system off NW Africa and the South Atlantic. Int J Earth Sci (Geol Rundsch) 98, 281–298 (2009). https://doi.org/10.1007/s00531-007-0234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0234-7

Keywords

Navigation