Skip to main content
Log in

Timescales of magmatic processes prior to the ∼4.7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Barium diffusion chronometry applied to sanidine phenocrysts from the trachytic Agnano-Monte Spina eruption (∼4.7 ka) constrains the time between reactivation and eruption of magma batches in the Campi Flegrei caldera. Backscattered electron imaging and quantitative electron microprobe measurements on 50 sanidine phenocrysts from representative pumice samples document core-to-rim compositional zoning. We focus on compositional breaks near the crystal rims that record magma mixing processes just prior to eruption. Diffusion times were modeled at a magmatic temperature of 930 °C using profiles based on quantitative BaO point analyses, X-ray scans, and grayscale swath profiles, yielding times ≤60 years between mixing and eruption. Such short timescales are consistent with volcanological and geochronological data that indicate that at least six eruptions occurred in the Agnano-San Vito area during few centuries before the Agnano-Monte Spina eruption. Thus, the short diffusion timescales are similar to time intervals between eruptions. Therefore, the rejuvenation time of magma residing in a shallow reservoir after influx of a new magma batch that triggered the eruption, and thus pre-eruption warning times, may be as short as years to a few decades at Campi Flegrei caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arienzo I, Civetta L, Heumann A et al (2009) Isotopic evidence for open system processes within the Campanian Ignimbrite magma chamber. Bull Volcanol 71:285–300

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L et al (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem Geol 270(1–4):135–147

    Article  Google Scholar 

  • Arienzo I, Heumann A, Wörner G et al (2011) Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy). Earth Planet Sci Lett 306:217–228

    Article  Google Scholar 

  • Arienzo I, D’Antonio M, Di Renzo V et al (2015) Isotopic microanalysis sheds light on the magmatic endmembers feeding volcanic eruptions: the Astroni 6 case study (Campi Flegrei, Italy). J Volcanol Geotherm Res 304:24–37

    Article  Google Scholar 

  • Arienzo I, Mazzeo FC, Moretti R et al (2016) Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: the example of the Nisida eruption. Chem Geol 427:109–124

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80

    Article  Google Scholar 

  • Capuano P, Russo G, Civetta L et al (2013) The active portion of the Campi Flegrei caldera structure imaged by 3D inversion of gravity data. Geochem Geophys Geosys 14:4681–4697

    Article  Google Scholar 

  • Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu Rev Earth Planet Sci 36:153–190

    Article  Google Scholar 

  • Chamberlain KJ, Morgan DJ, Wilson CJN (2014) Timescales of mixing and mobilisation in the bishop tuff magma body: perspectives from diffusion chronometry. Contrib Mineral Petrol 167:1034

    Article  Google Scholar 

  • Cherniak DJ (2002) Ba diffusion in feldspar. Geochim Cosmochim Acta 66:1641–1650

    Article  Google Scholar 

  • Chiodini G, Vandemeulebrouck J, Caliro S et al (2015) Evidence of thermal-driven processes triggering the 2005-2014 unrest at Campi Flegrei caldera. Earth Planet Sci Lett 414:58–67

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L et al (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei Caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483

    Article  Google Scholar 

  • Cooper KM, Reid MR (2008) Uranium-series crystal ages. Rev Mineral Geochem 69:479–544

    Article  Google Scholar 

  • Costa F, Morgan D (2011) Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner SP, Van Orman JA (eds) Timescales of magmatic processes: from core to atmosphere. Blackwell Publishing Ltd, pp 125–159

  • Costa F, Dohmen R, Chakraborty C (2008) Time scales of magmatic processes from modeling the zoning patters of crystals. Rev Mineral Geochem 69:545–594

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford, p 414

    Google Scholar 

  • D’Antonio M (2011) Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J Volcanol Geotherm Res 200:91–98

    Article  Google Scholar 

  • D’Antonio M, Civetta L, Orsi G et al (1999) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J Volcanol Geotherm Res 91:247–268

    Article  Google Scholar 

  • D’Antonio M, Tonarini S, Arienzo I et al. (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In: Beccaluva L, Bianchini G, Wilson M (eds.). Cenozoic volcanism in the Mediterranean area. Geol Soc Am Spec Pap 418, Geol Soc Am, Boulder, CO, pp 203–220

  • D’Auria L, Pepe S, Castaldo R et al (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci Rep 5:13100. doi:10.1038/srep13100

    Article  Google Scholar 

  • de Saint Blanquat M, Horsman E, Habert G et al (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33

    Article  Google Scholar 

  • de Vita S, Orsi G, Civetta L et al (1999) The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301

    Article  Google Scholar 

  • De Vivo B, Rolandi G, Gans PB et al (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineral Petrol 73:47–65

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Del Gaudio C, Aquino I, Ricciardi GP et al (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195:48–56

    Article  Google Scholar 

  • Di Matteo V, Carroll MR, Behrens H et al (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L et al (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G et al (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Braia G et al (2011) The Averno 2 fissure eruption: a recent small size explosive event at the Campi Flegrei caldera. Bull Volcanol 73:295–320

    Article  Google Scholar 

  • Fabbrizio A, Carroll MR (2008) Experimental constraints on the differentiation process and pre-eruptive conditions in the magmatic system of Phlegraean Fields (Naples, Italy). J Volcanol Geotherm Res 171:88–102

    Article  Google Scholar 

  • Fabbrizio A, Scaillet B, Carroll MR (2009) Estimation of pre-eruptive magmatic water fugacity in the Phlegrean Fields, Naples, Italy. Eur J Mineral 21:107–116

    Article  Google Scholar 

  • Fedele FG, Giaccio B, Isaia R et al. (2007) The Campanian Ignimbrite factor: towards a reappraisal of the Middle to Upper Palaeolithic “transition”, in: Grattan J, Torrence R (eds) Living under the shadow: the cultural impacts of volcanic eruptions. One World Archaeology Series, 53, Left Coast Press, Walnut Creek, CA, pp 19–41

  • Fedele L, Scarpati C, Lanphere M et al (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70:1189–1219

    Article  Google Scholar 

  • Fedele L, Zanetti A, Morra V et al (2009) Clinopyroxene/liquid trace element partitioning in natural trachytetrachyphonolite systems: insights from Campi Flegrei (southern Italy). Contrib Mineral Petrol 158:337–356

  • Fedele L, Insinga DD, Calvert AT et al (2011) 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol 73:1323–1336

    Article  Google Scholar 

  • Fedele L, Insinga DD, Calvert AT et al (2012) Reply to the comment on the article “40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity” by Isaia et al. Bull Volcanol 74:297–299

    Article  Google Scholar 

  • Fedele L, Lustrino M, Melluso L et al (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy). Am Mineral 100:233–249

    Article  Google Scholar 

  • Fedele L, Scarpati C, Sparice D et al (2016) A chemostratigraphic study of the Campanian ignimbrite eruption (Campi Flegrei, Italy): insights on magma chamber withdrawal and deposit accumulation as revealed by compositionally zoned stratigraphic and facies framework. J Volcanol Geotherm Res 324:105–117

    Article  Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of large-volume pyroclastic flow emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Fourmentraux C, Métrich N, Bertagnini A, Rosi M (2012) Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields, Italy). Contrib Mineral Petrol 163(6):1121–1137

    Article  Google Scholar 

  • Gebauer SK, Schmitt AK, Pappalardo L et al (2014) Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite. Contrib Mineral Petrol 167:953

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2004) Structure and dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. J Petrol 45(11):2197–2223

    Article  Google Scholar 

  • Isaia R, Di Vito MA, de Vita S et al (2012) Comment on “40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity” by Fedele et al. [Bull Volcanol 73:1323–1336]. Bull Volcanol 7:293–296

    Article  Google Scholar 

  • Mangiacapra A, Moretti R, Rutherford M et al (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304. doi:10.1029/2008GL035550

    Article  Google Scholar 

  • Melluso L, De’ Gennaro R, Fedele L et al (2012) Evidence of crystallization in residual, Cl-F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geol Mag 149(3):532–550

    Article  Google Scholar 

  • Morgan DJ, Blake S, Rogers NW et al (2004) Time scales of crystal residence and magma chamber volumes from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 222:933–946

    Article  Google Scholar 

  • Morgan DJ, Blake S, Rogers NW et al (2006) Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34:845–848

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito MA (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287:265–276

    Article  Google Scholar 

  • Pabst S, Wörner G, Civetta L, Tesoro R (2008) Magma chamber evolution prior to the Campanian ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70:961–976

    Article  Google Scholar 

  • Pappalardo L, Civetta L, D’Antonio M et al (1999) Chemical and Sr–isotopic evolution of the Phlegrean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J Volcanol Geotherm Res 91:141–166

    Article  Google Scholar 

  • Pappalardo L, Piochi M, D’Antonio M et al (2002) Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotopic data. J Petrol 43(8):1415–1434

    Article  Google Scholar 

  • Perugini D, De Campos CP, Petrelli M, Dingwell DB (2015) Concentration variance decay during magma mixing: a volcanic chronometer. Sci Rep 5:14225. doi:10.1038/srep14225

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Reid MR (2003) Timescales of magma transfer and storage in the crust. Treatise on Geochemistry 3:167–193

    Article  Google Scholar 

  • Roach AL (2005) The evolution of silicic magmatism in the post-caldera volcanism of the Phlegrean Fields, Italy. Unpublished PhD Thesis, Department of Geological Sciences, Brown University, Providence, Rhode Island (USA), pp 171

  • Rosi M, Vezzoli L, Grieco G (1999) Plinian pumice fall deposit of the Campanian ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91(2–4):179–198

    Article  Google Scholar 

  • Ruprecht P, Cooper KM (2012) Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from Volcán Quizapu, Central Chile. J Petrol 53(4):841–871

    Article  Google Scholar 

  • Saccorotti G, Petrosino S, Bianco F et al (2007) Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei Caldera, Italy. Phys Earth Planet Int 165:14–24

    Article  Google Scholar 

  • Scarpati C, Perrotta A, Lepore S, Calvert A (2013) Eruptive history of Neapolitan volcanoes: constraints from 40Ar/39Ar dating. Geol Mag 150:412–425

    Article  Google Scholar 

  • Scarpati C, Sparice D, Perrotta A (2014) A crystal concentration method for calculating ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the Campanian Ignimbrite. J Volcanol Geotherm Res 280:67–75

    Article  Google Scholar 

  • Schmitt AK (2011) Uranium series accessory crystal dating of magmatic processes. Annu Rev Earth Planet Sci 39:321–349

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito MA et al (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera. Italy Bull Volcanol 74:497–510

    Article  Google Scholar 

  • Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

    Article  Google Scholar 

  • Till CB, Vazquez JA, Boyce JW, Hitzman C (2012) Quantifying the interval between rejuvenation and eruption of rhyolite at Yellowstone caldera using high-resolution NanoSIMS geospeedometry. Abstract V43E-01 presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 Dec

  • Till CB, Vazquez JA, Boyce JW (2015) Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43:695–698. doi:10.1130/G36862.1

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA et al (2009) Geochemical and isotopical (B, Sr, Nd) evidence for mixing and mingling processes in the magmatic system feeding the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (South Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Turner S, Costa F (2007) Measuring timescales of magmatic evolution. Elements 3:267–272

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the framework of “Project V2—Precursori di Eruzioni,” funded to M.D. by the Dipartimento per la Protezione Civile (DPC)–Istituto Nazionale di Geofisica e Vulcanologia (2013–2015), of DFG project Wo 362/42-1 funded to G.W., and of DAAD-MIUR Joint Mobility Program no. 57266092 funded to G.W. and M.D. This paper does not necessarily represent DPC official opinions and policies. T. Di Rocco, L. Francalanci, A. Kronz, D. Perugini, and M. Petrelli are thanked for analytical support and discussions. We are very grateful to the Associate Editor P.J. Wallace, as well as D. Morgan and a second anonymous reviewer, for their constructive comments and suggestions. D. Morgan is also acknowledged for his kind assistance in elaboration of the cumulative frequency plot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo D’Antonio.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

ESM 1

EMP analyses, BSE images, accumulated maps, and X-ray scans for selected sanidines of A-MS Member A (XLSX 25602 kb)

ESM 2

EMP analyses, BSE images, accumulated maps, and X-ray scans for selected sanidines of A-MS Member B (XLSX 7195 kb)

ESM 3

EMP analyses, BSE images, accumulated maps, and X-ray scans for selected sanidines of A-MS Member D (XLSX 8672 kb)

ESM 4

BaO content vs. gray value binary diagram for crystal Acx6, showing the equation of regression line and its parameters (XLSX 932 kb)

ESM 5

Temperature estimates obtained through two-feldspar geothermometry on plagioclase-sanidine pairs, and Cpx-melt geothermometry (Putirka 2008) from A-MS products (XLSX 54 kb)

ESM 6

Timescale estimates for Agnano-Monte Spina sanidine phenocrysts derived from Ba diffusion models across selected transects, calculated for temperatures of 900, 930 and 950 °C (XLSX 27 kb)

ESM 7

Frequency histograms for all age estimates based on the three methodologies, calculated for temperatures of 900, 930 and 950 °C (XLSX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iovine, R.S., Fedele, L., Mazzeo, F.C. et al. Timescales of magmatic processes prior to the ∼4.7 ka Agnano-Monte Spina eruption (Campi Flegrei caldera, Southern Italy) based on diffusion chronometry from sanidine phenocrysts. Bull Volcanol 79, 18 (2017). https://doi.org/10.1007/s00445-017-1101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1101-4

Keywords

Navigation