Skip to main content

Advertisement

Log in

Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody α (H-300) raised against the human α1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol g −1FM  h−1) than in those of L. vulgaris (31.8 ± 3.3 µmol g −1FM  h−1). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmolATP g −1FM  h−1, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold JM (1965) Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biol Bull 128:24–32

    Article  Google Scholar 

  • Bolner KCS, Baldisserotto B (2007) Water pH and urinary excretion in silver catfish Rhamdia quelen. J Fish Biol 70:50–64

    Article  CAS  Google Scholar 

  • Bone Q, Brown E, Travers G (1994) On the respiratory flow in the cuttlefish Sepia officinalis. J Exp Biol 194:153–165

    CAS  PubMed  Google Scholar 

  • Boron WF (2004) Regulation of intracellular pH. Adv Physiol Educ 28:160–179

    Article  PubMed  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1977) Experimental study of digestion in Octopus vulgaris (Cephalopoda, Octopoda). J Zool Lond 183:505–515

    Article  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1994) Ammonia production in cephalopods, physiological and evolutionary aspects. Mar Fresh Behav Physiol 25:53–60

    Article  Google Scholar 

  • Budelmann BU, Schipp R, Boletzky S von (1997) Cephalopoda. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates, vol 6A. Wiley-Liss, New York, pp 119–414

    Google Scholar 

  • Charmantier G, Charmantier-Daures M (2001) Ontogeny of osmoregulation in crustaceans: the embryonic phase. Am Zool 41:1078–1089

    Article  Google Scholar 

  • Charmantier G, Haond C, Lignot J-H, Charmantier-Daures M (2001) Ecophysiological adaptation to salinity throughout a life cycle: a review in homarid lobsters. J Exp Biol 204:967–977

    CAS  PubMed  Google Scholar 

  • Cieluch U, Charmantier G, Grousset E, Charmantier-Daures M, Anger K (2005) Osmoregulation, immunolocalization of Na+/K+-ATPase, and ultrastructure of branchial epithelia in the developing brown shrimp, Crangon crangon (Decapoda, Caridea). Physiol Biochem Zool 78:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Claiborne JB, Edwards SL (2002) Acid-base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293:302–319

    Article  CAS  PubMed  Google Scholar 

  • Colina C, Rosenthal JJC, DeGiorgis JA, Srikumar D, Iruku N, Holmgren M (2007) Structural basis of Na+/K+-ATPase adaptation to marine environments. Nat Struc Mol Biol 14:431

    Google Scholar 

  • Dean RB (1941) Theories of electrolyte equilibrium in muscle. Biol Symp 3:331–348

    CAS  Google Scholar 

  • Donaubauer HH (1980) Adenosine triphosphatase localization in the branchial heart of Sepia officinalis L. (Cephalopoda). Histochemistry 69:27–37

    Article  CAS  PubMed  Google Scholar 

  • Donaubauer HH (1981) Sodium- and potassium-activated adenosine triphosphatase in the excretory organs of Sepia officinalis (Cephalopoda). Mar Biol 63:143–150

    Article  CAS  Google Scholar 

  • Emanuel CF, Martin AW (1956) The composition of octopus renal fluid. J Comp Physiol 39:226–234

    CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Fagan MJ, Saier MH (1994) P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38:57–99

    Article  CAS  PubMed  Google Scholar 

  • Fioroni P (1962) Die embryonale Entwicklung der Hautdrüsen und des Trichterorganes von Octopus vulgaris Lam. Acta Anat 50:264–295

    Article  CAS  PubMed  Google Scholar 

  • Fioroni P (1990) Our recent knowledge of the development of the cuttlefish (Sepia officinalis). Zool Anz 224:1–25

    Google Scholar 

  • Garvin JL, Burg MB, Knepper MA (1985) Ammonium replaces potassium in supporting sodium transport by the Na-K-ATPase of renal proximal straight tubules. Am J Physiol Renal Physiol 249:F785–F788

    CAS  Google Scholar 

  • Gibbs A, Somero GN (1990) Na+-K+-adenosine triphosphatase activities in gills of marine teleost fishes: changes with depth, size and locomotory activity level. Mar Biol 106:315–321

    Article  CAS  Google Scholar 

  • Giffard-Mena I, Charmantier G, Grousset E, Aujoulat F, Castille R (2006) Digestive tract ontogeny of Dicentrarchus labrax: implication in osmoregulation. Dev Growth Differ 48:139–151

    Article  CAS  PubMed  Google Scholar 

  • Gutowska MA, Melzner F (2009) Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2. Mar Biol 156:515–519

    Article  CAS  Google Scholar 

  • Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner H-O (2009) Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol [B] (in press)

  • Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036

    Article  CAS  PubMed  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Houlihan DF, McMillan DN, Agnisola C, Trara Genoino I, Foti L (1990) Protein synthesis and growth in Octopus vulgaris. Mar Biol 106:251–259

    Article  CAS  Google Scholar 

  • Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2:e302

    Article  PubMed  CAS  Google Scholar 

  • Hu MY, Yan HY, Chung WS, Shiao YC, Hwang PP (2009) Acoustically evoked potential in two cephalopods infered using the auditory brainstem response (ABR) approach. Comp Biochem Physiol 153:278–283

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148:479–497

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa T, Ishimatsu A, Kita J (2003) Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environ Toxicol 18:375–382

    Article  CAS  PubMed  Google Scholar 

  • Knepper MA (2008) Physiology: courier service for ammonia. Nature 456:336–337

    Article  CAS  PubMed  Google Scholar 

  • Kurtz I, Balaban RS (1986) Ammonium as a substrate for Na+-K+-ATPase in rabbit proximal tubules. Am J Physiol Renal Physiol 250:F497–F502

    CAS  Google Scholar 

  • Lämmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Laurie M (1983) The organ of Verrill in Loligo. Q J Microsc Sci 29:97–100

    Google Scholar 

  • Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the (Na++K+)-ATPase α-subunit in Drosophila melanogaster. EMBO J 8:193–202

    CAS  PubMed  Google Scholar 

  • Lemaire J (1970) Table de développement embryonaire de Sepia officinalis L. (Mollusque Céphalopode). Bull Soc Zool Fr 95:773–782

    Google Scholar 

  • Lignot J-H, Charmantier G (2001) Immunolocalization of Na+/K+-ATPase in the branchial cavity during the early development of the european lobster Homarus gammarus (Crustacea, Decapoda). J Histochem Cytochem 49:1013–1023

    CAS  PubMed  Google Scholar 

  • Melzner F, Bock C, Pörtner H-O (2006) Critical temperatures in the cephalopod Sepia officinalis investigated using in vivo 31P NMR spectroscopy. J Exp Biol 209:891–906

    Article  CAS  PubMed  Google Scholar 

  • Melzner F, Mark FC, Pörtner H-O (2007) Role of blood-oxygen transport in thermal tolerance of the cuttlefish, Sepia officinalis. Integr Comp Biol 47:645–655

    Article  CAS  Google Scholar 

  • Melzner F, Göbel S, Langenbuch M, Gutowska MA, Pörtner H-O, Lucassen M (2009a) Swimming performance in Atlantic cod (Gadus morhua) following long-term (4-12 month) acclimation to elevated seawater pCO2. Aqua Toxicol 92:30–37

    Article  CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner H-O (2009b) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeoscience 6:2313–2331

    Article  CAS  Google Scholar 

  • Murer H, Hopfer U (1974) Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Nat Acad Sci USA 71:484–488

    Article  CAS  PubMed  Google Scholar 

  • Nebel C, Negre-Sadargues G, Blasco C, Charmantier G (2005) Morphofunctional ontogeny of the urinary system of the European sea bass Dicentrarchus labrax. Anat Embryol 209:193–206

    Article  PubMed  Google Scholar 

  • Nixon M, Mangold K (1998) The early life of Sepia officinalis, and the contrast with that of Octopus vulgaris (Cephalopoda). J Zool Lond 245:407–421

    Article  Google Scholar 

  • O’Dor RK (2002) Telemetered cephalopod energetics: swimming, soaring, and blimping. Integr Comp Biol 42:1065–1070

    Article  Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Article  CAS  Google Scholar 

  • Perry SF, Gilmour KM (2006) Acid–base balance and CO2 excretion in fish: unanswered questions and emerging models. Respir Physiol Neurobiol 154:199–215

    Article  CAS  PubMed  Google Scholar 

  • Peterson GL, Hokin LE (1981) Molecular weight and stoichiometry of the sodium- and potassium-activated adenosine triphosphatase subunits. J Biol Chem 256:3751–3761

    CAS  PubMed  Google Scholar 

  • Pörtner HO (1994) Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar Fresh Behav Physiol 25:131–148

    Article  Google Scholar 

  • Pörtner H-O, Zielinski S (1998) Environmental constraints and the physiology of performance in squids. S Afr J Mar Sci 20:207–221

    Google Scholar 

  • Pörtner H-O, Webber DM, Boutilier RG, O’Dor RK (1991) Acid-base regulation in exercising squid (Illex illecebrosus, Loligo pealei). Am J Physiol Regul Integr Comp Physiol 261:R239–R246

    Google Scholar 

  • Potts WTW (1965) Ammonia excretion in Octopus dolfeini. Comp Biochem Physiol 14:339–355

    Article  CAS  PubMed  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 - transporters. Eur J Physiol 447:495–509

    Article  CAS  Google Scholar 

  • Schipp R, Boletzky S von (1976) The pancreatic appendages of dibranchiate cephalopods. Zoomorphology 86:81–98

    Article  Google Scholar 

  • Schipp R, Mollenhauer S, Boletzky S von (1979) Electron microscopical and histochemical studies of differentiation and function of the cephalopod gill (Sepia officinalis L.). Zoomorphology 93:193–207

    Article  Google Scholar 

  • Schwartz AA, Allen JC, Harigaya S (1969) Possible involvement of cardiac Na+/K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J Pharmacol Exp Ther 168:31–41

    CAS  PubMed  Google Scholar 

  • Siebers D, Leweck K, Markus H, Winkler A (1982) Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity. Mar Biol 69:37–43

    Article  CAS  Google Scholar 

  • Siebers D, Winkler A, Leweck K, Madian A (1983) Regulation of sodium in the shore crab Carcinus maenas, adapted to environments of constant and changing salinities. Helgoländer Meeresunters 36:303–312

    Article  Google Scholar 

  • von Boletzky S (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles, vol I. Academic Press, London, pp 31–52

    Google Scholar 

  • Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ (1999) In rat tiMCD, NH +4 uptake by Na+/K+-ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277:F866-F874

    Google Scholar 

  • Wells MJ (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824

    Article  Google Scholar 

  • Wells JM, O’Dor RK (1991) Jet propulsion and the evolution of the cephalopods. Bull Mar Sci 49:419–432

    Google Scholar 

  • Wells JM, Wells J (1989) Water uptake in a cephalopod and the function of the so-called “pancreas”. J Exp Biol 145:215–226

    Google Scholar 

  • Wheatly MG, Henry RP (1992) Extracellular and intracellular acid-base regulation in crustaceans. J Exp Zool 263:127–142

    Article  CAS  Google Scholar 

  • Wood CM, Milligan LC, Walsh PJ (1999) Renal responses of trout to chronic respiratory and metabolic acidosis and metabolic alkalosis. Am J Physiol Regul Integr Comp Physiol 277:482–492

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. P. Saftig for providing the confocal microscope (Axiovert 200M) at the Unit of Molecular Cell Biology and Transgenic Research in Kiel and E. Grousset for valuable assistance with classic histology. We are grateful for the valuable suggestions of three anonymous reviewers and to Rainer Kiko for suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Y. Hu.

Additional information

This study was partly funded by a DFG Excellence Cluster “Future Ocean” grant awarded to F.M. and the BMBF project BIOACID 3.1.3 awarded to F.M. and M.L.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M.Y., Sucré, E., Charmantier-Daures, M. et al. Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res 339, 571–583 (2010). https://doi.org/10.1007/s00441-009-0921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0921-8

Keywords

Navigation