Skip to main content
Log in

On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aplin AC, Matenaar IF, Mc Carty DK, van der Pluijm BA (2006) Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays Clay Miner 54(4):500–514. doi:10.1346/CCMN.2006.0540411

    Article  Google Scholar 

  • Bird P (1984) Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability and strength of fault gouge. Tectonophysics 107:235–260. doi:10.1016/0040-1951(84)90253-1

    Article  Google Scholar 

  • Blythe AE, d’Alessio MA, Buergmann R (2004) Constraining the exhumation and burial history of the SAFOD pilot hole with apatite fission track and (U/Th)/He thermochronometry. Geophys Res Lett 31:LI5S16. doi:10.1029/2003GL019407

  • Boness NL, Zoback M (2006) Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34(10):825–828. doi:10.1130/G22309.1

    Article  Google Scholar 

  • Bradbury KK, Barton DC, Solum JG, Draper SD, Evans JP (2007) Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: initial interpetations of fault zone composition and constraints on geologic models. Geosphere 3(5):299–318. doi:10.1130/GES00076.1

    Article  Google Scholar 

  • Day-Stirrat RJ, Aplin AC, Srodon J, van der Pluijm BA (2008) Diagenetic reorientation of phyllosilicates minerals in paleogene mudstones of the Podhale basin, South Poland. Clays Clay Miner 56(1):100–111. doi:10.1346/CCMN.2008.0560109

    Article  Google Scholar 

  • Dickinson WR (1966) Structural relationships of San Andreas fault system, Cholame Valley and Caslte Mountain Range, California. Geol Soc Am Bull 77:707–726. doi:10.1130/0016-7606(1966)77[707:SROSAF]2.0.CO;2

    Article  Google Scholar 

  • Dong H, Peacor DR, Freed RL (1997) Phase relations among smectite, R1 illite-smectite and illite. Am Mineral 82:379–391

    Google Scholar 

  • Draper SD, Boness NL, Evans JP (2005) Source and Significance of the Sedimentary Rocks in the SAFOD Borehole: Preliminary Analysis. Eos Trans AGU 86(52):T24B–02

    Google Scholar 

  • Evans JP, Chester FM (1995) Fluid–rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures. J Geophys Res 100(B7):13007–13020. doi:10.1029/94JB02625

    Article  Google Scholar 

  • Grim RE, Bradley WF (1948) Rehydration and dehydration of the clay minerals. Am Mineral 33:50–59

    Google Scholar 

  • Grim RE, Rowland RA (1944) Differential thermal analysis of clays and shales, control and prospecting method. Am Ceram Soc J 27:65–76. doi:10.1111/j.1151-2916.1944.tb14871.x

    Article  Google Scholar 

  • Hansen PL, Lindgreen H (1989) Mixed layer illite/smectite diagenesis in Upper Jurassic claystones from the North Sea and onshore Denmark. Clay Miner 24(2):197–213. doi:10.1180/claymin.1989.024.2.07

    Article  Google Scholar 

  • Hickman SH, Zoback MD, Ellsworth WL (2004) Introduction to special sections: preparing for the San Andreas Fault Observatory at Depth. Geophys Res Lett 31:L12S01. doi:10.1029/2004GL020688

    Article  Google Scholar 

  • Hickman S, Zoback M, Ellsworth W (2005) Structure and composition of the San Andreas Fault Zone at Parkfield: results from SAFOD Phase 1 and 2, EOS 87 (Fall Meet. Suppl.), abstr. T23E-05

  • Ho NC, Peacor DR, van der Pluijm BA (1999) Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite–illite transition. Clays Clay Miner 47:495–504. doi:10.1346/CCMN.1999.0470412

    Article  Google Scholar 

  • Hoffmann J, Hower J (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed beld of Montana, USA. SEPM Spec Publ 26:55–79

    Google Scholar 

  • Huang W, Longo JM, Pevear DR (1993) An experimentally derived kinetic model for smectite to illite conversion and its use as a geothermometer. Clays Clay Miner 41(2):162–177. doi:10.1346/CCMN.1993.0410205

    Article  Google Scholar 

  • Hunziker JC, Frey M, Clayer N, Dallmeyer RD, Friedrichsen H, Flehming W et al (1986) The evolution of illite to muscovite:mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180. doi:10.1007/BF00375291

    Article  Google Scholar 

  • Ikari MJ, Saffer DM, Marone C (2007) Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J Geophys Res 112:B06423. doi:10.1029/2006JB004748

    Article  Google Scholar 

  • Janssen C, Laube N, Bau M, Gray DR (1998) Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analysis and stable isotopic signatures. Tectonophysics 294(1–2):109–130. doi:10.1016/S0040-1951(98)00127-9

    Article  Google Scholar 

  • Janssen C, Romer RL, Plessen B, Naumann R, Hoffmann-Rothe A, Matar A (2007) Contrasting fluid regimes along the Dead Sea Transform. Geofluids 7:275–291. doi:10.1111/j.1468-8123.2007.00185.x

    Article  Google Scholar 

  • Kim J, Peacor DR, Tessier D, Elsass F (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner 43:51–57. doi:10.1346/CCMN.1995.0430106

    Article  Google Scholar 

  • Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291:473–506

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, p 378

    Google Scholar 

  • Moore DE, Rymer MJ (2007) Talc bearing serpentinite and the creeping section of the San Andreas fault. Nature 448(16):795–797. doi:10.1038/nature06064

    Article  Google Scholar 

  • Morrow CA, Solum JG, Tembe SD, Lockner DA, Wong TF (2007) Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD. Geophys Res Lett (submitted)

  • Nadeau R, Michelini A, Uhrhammer R, Dolenc D, McEvilly T (2004) Fault structure, microearthquake recurrence and deep fault slip surrounding the SAFOD target. Geophys Res Lett 31:L12S08. doi:10.1029/2003GL019409

    Article  Google Scholar 

  • Nieto F, Ortega-Huertas M, Peacor DR, Arostegui J (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner 44(3):304–323. doi:10.1346/CCMN.1996.0440302

    Article  Google Scholar 

  • O’Neil JR (1985) Water–rock interactions in fault gouge. Pure Appl Geophys 122:440–446. doi:10.1007/BF00874610

    Article  Google Scholar 

  • Oertel G (1985) The relationship of strain and preferred orientation of phyllosilicate grains in rocks: a review. Tectonophysics 100:413–447. doi:10.1016/0040-1951(83)90197-X

    Article  Google Scholar 

  • Page BM, Thompson GA, Coleman RG (1998) Late Cenozoic tectonics of the central and southern Coast Ranges of California. Geol Soc Am Bull 110:846–876. doi:10.1130/0016-7606(1998)110<0846:OLCTOT>2.3.CO;2

    Article  Google Scholar 

  • Pares JM, Schleicher AM, van der Pluijm BA, Hickman SH (2008) Paleomagnetic reorientation of the SAFOD borehole. Geophys Res Lett 35:L02306. doi:10.1029/2007GL030921

    Article  Google Scholar 

  • Peacor DR (1992) Diagenesis and low-grade metamorphism of shales and slates. In: Buseck PR (ed) Minerals and reactions at atomic scale: transmission electron microscopy, Rev Mineral 27:335–380

    Google Scholar 

  • Perry E, Hower J (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner 18:165–177. doi:10.1346/CCMN.1970.0180306

    Article  Google Scholar 

  • Pollastro RM (1993) Consideration and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner 41(2):119–133. doi:10.1346/CCMN.1993.0410202

    Article  Google Scholar 

  • Reynolds RC, Reynolds RC (1996) NEWMOD: a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Hanover, New Hampshire

    Google Scholar 

  • Rutter EH, Maddock RH, Hall SH, White SH (1986) Comparative microstructure of natural and experimentally produced clay bearing fault gouges. Pure Appl Geophys 24:3–30. doi:10.1007/BF00875717

    Article  Google Scholar 

  • Rutter EH, Holdsworth RE, Knipe RJ (2001) The nature and tectonic significance of fault-zone weakening: an introduction, Geological Society of London. Spec Publ 186(1):1–11

    Google Scholar 

  • Sachsenhofer RF, Rantitsch G, Hasenhuettl C, Russegger B, Jelen B (1998) Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Miner 33:523–537

    Google Scholar 

  • Saffer DM, Marone C (2003) Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet Sci Lett 215:219–235. doi:10.1016/S0012-821X(03)00424-2

    Article  Google Scholar 

  • Schleicher AM, van der Pluijm BA, Solum JG, Warr LN (2006) The origin and significance of clay minerals on surfaces, in fractures and in veins from SAFOD borehole samples (Parkfield, California). Gophys Res Lett 33:LI 6313

    Google Scholar 

  • Solum JG, van der Pluijm BA (2005) Phyllosilicate mineral assemblages of the SAFOD pilot hole and comparison with an exhumed segment of the San Andreas Fault system. Geophys Res Lett 31:L15S19. doi:10.1029/2004GL019909

    Article  Google Scholar 

  • Solum JG, van der Pluijm BA, Peacor DR, Warr LN (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res 108, B5: 5–1 to 5–12

    Google Scholar 

  • Solum JG, Hickman SH, Lockner DA, Moore DE, van der Pluijm BA, Schleicher AM et al (2006) Mineralogical characterization of protolith and fault rocks from the SAFOD main hole. Geophys Res Lett 33:L21314. doi:10.1029/2006GL027285

    Article  Google Scholar 

  • Srodon J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner 34(4):368–378. doi:10.1346/CCMN.1986.0340403

    Article  Google Scholar 

  • Srodon J, Kotarba M, Biron A, Such P, Clauer N, Wojtowicz A (2006) Diagenetic history of the Podhale-Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Miner 41:751–774. doi:10.1180/0009855064130217

    Article  Google Scholar 

  • Sucha V, Kraus I, Gerthofferova H, Petes J, Serekova M (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Miner 28:243–253. doi:10.1180/claymin.1993.028.2.06

    Article  Google Scholar 

  • Tembe SD, Lockner DA, Solum JG, Morrow CA, Wong TF, Moore DE (2006) Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2. Geophys Res Lett 33:L23307. doi:10.1029/2006GL027626

    Article  Google Scholar 

  • Thurber C, Roecker S, Zhang H, Baher S, Ellsworth WL (2004) Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophys Res Lett 31:L12S02

    Article  Google Scholar 

  • Tourscher S, Schleicher AM, van der Pluijm BA, Warr LN (2008) Constraints on mineralization, fluid-rock interaction and mass transfer during faulting at 3 km depth from the SAFOD drill hole. J Geophys Res (submitted)

  • van der Pluijm BA, Ho N-C, Peacor DR (1994) High-resolution X-ray texture goniometry. J Struct Geol 16:1029–1032. doi:10.1016/0191-8141(94)90084-1

    Article  Google Scholar 

  • Vrolijk P, van der Pluijm BA (1999) Clay gouge. J Struct Geol 21:1039–1048. doi:10.1016/S0191-8141(99)00103-0

    Article  Google Scholar 

  • Wallace (ed) (1990) The San Andreas Fault System, California, Geological Survey, Professional Paper 1515, United States Government Printing Office, Washington

  • Warr LN, Cox S (2001) Clay mineral transformation and weakening mechanisms along the Trans Alpine Fault, New Zealand, Geological Society London. Spec Publ 186:85–101

    Article  Google Scholar 

  • Warr LN, Nieto F (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a TEM and XRD study of claymineral crystallinity index standards. Can Mineral 36:1453–1474

    Google Scholar 

  • Wenk HR (1985) Preferred orientation in deformed rocks (eds.), Academic Press, Orlando

  • Williams CF, Grubb FV, Galanis SP Jr (2004) Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault. Geophys Res Lett 31:L15S14. doi:10.1029/2003GL019352

    Article  Google Scholar 

  • Williams CF, Grubb FV, Galanis SP (2006) Heat-flow measurements across the San Andreas Fault near Parkfiel, California, preliminary results from SAFOD. EOS 87 (Fall Meet.Suppl.), abstr. S33B-0241

  • Wu FT, Blatter L, Roberson H (1974) Clay gouges in the San Andreas fault system and their possible implications. Pure Appl Geophys 113:87–96. doi:10.1007/BF01592901

    Article  Google Scholar 

  • Yonghong Y, van der Pluijm BA, Peacor DR (2001) Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation. Geological Society. Spec Publ 186:103–112

    Google Scholar 

  • Zoback M, Hickman S, Ellsworth W (2005) Drilling, sampling and measurements in the San Andreas Fault Zone at seismogenic depth, EOS 87 (Fall Meet. Suppl.), abstr. T23E-01

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG Project SCHL 1821/1-1 and 1–2), and the National Science Foundation (EAR-0345985) provided support for our SAFOD research. The CGS at the University of Strasbourg is thanked for allowing us access to their laboratory equipment. Thanks to Steve Hickman and John Solum for providing samples and to our colleagues from the SAFOD project for discussions. Chris Marone and an anonymous reviewer are thanked for helpful comments and corrections that resulted in an improved presentation of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Schleicher.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, A.M., Warr, L.N. & van der Pluijm, B.A. On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California). Contrib Mineral Petrol 157, 173–187 (2009). https://doi.org/10.1007/s00410-008-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0328-7

Keywords

Navigation