Skip to main content
Log in

Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100–180%), and to a lesser extent in N. coriiceps gills (7–56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bellamy D (1961) Movements of potassium, sodium and chloride in incubated gills from the silver eel. Comp Biochem Physiol 3:125–135

    Article  CAS  Google Scholar 

  • Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C Toxicol Pharmacol 130(4):411–423

    Article  CAS  PubMed  Google Scholar 

  • Boutilier RG, Hemming TA, Iwama GK (1984) Physicochemical parameters for use in fish respirometry physiology. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, 10, pp 403–430

  • Bowgen AD, Fraser KP, Peck LS, Clarke A (2007) Energetic cost of synthesizing proteins in Antarctic limpet, Nacella concinna (Strebel, 1908), is not temperature dependent. Am J Physiol Regul Integr Comp Physiol 292(6):R2266–R2274

    CAS  PubMed  Google Scholar 

  • Burchett MS, Sayers PJ, North AW, White MG (1983) Some biological aspects of the nearshore fish populations at South Georgia. British Antarct Surv Bull 59:63–74

    Google Scholar 

  • Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312(Pt 1):163–167

    CAS  PubMed  Google Scholar 

  • Caldeira K, Akai M, Brewer PG, Chen B, Haugan PM, Iwama T, Johnston P, Kheshgi H, Li Q, Ohsumi T, Pörtner HO, Sabine C, Shirayama Y, Thomson J (2005) Ocean storage. In: Metz B et al (eds) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 277–318

    Google Scholar 

  • Carter G, Houlihan DF, Brechin J, McCarthy ID (1993) The relationships between intake and protein accretion, synthesis, and retention efficiency for individual grass carp, Ctenopharyngodon idella (Valenciennes). Can J Zool 71:392–400

    Article  CAS  Google Scholar 

  • Casaux RJ, Mazzotta AS, Barrera-Oro ER (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11(1):63–72

    Article  Google Scholar 

  • Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165

    Article  Google Scholar 

  • Casey TM, Pakay JL, Guppy M, Arthur PG (2002) Hypoxia causes downregulation of protein and RNA synthesis in noncontracting mammalian cardiomyocytes. Circ Res 90(7):777–783

    Article  CAS  PubMed  Google Scholar 

  • Caulfield JA, Auerbach DI, Adams EE, Herzog HJ (1997) Near field impacts of reduced pH from ocean CO2 disposal. Energy Convers Manage 38:S343–S348

    Article  CAS  Google Scholar 

  • Claiborne JB, Evans DH (1992) Acid–base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: a role for ammonia excretion. J Exp Zool 261:9–17

    Article  CAS  Google Scholar 

  • Claiborne JB, Heisler N (1983) Acid–base regulation and ion transfers in the carp (Cyprinus carpio) during and after exposure to environmental hypercapnia. J Exp Biol 108:25–43

    Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68(5):893–905

    Article  Google Scholar 

  • Decostere A, Henckaerts K, Ducatelle R, Haesebrouck F (2002) An alternative model to study the association of rainbow trout (Oncorhynchus mykiss L.) pathogens with the gill tissue. Lab Anim 36(4):396–402

    Article  CAS  PubMed  Google Scholar 

  • Deigweiher K, Koschnick N, Pörtner HO, Lucassen M (2008) Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 295(5):R1660–R1670

    CAS  PubMed  Google Scholar 

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the southern ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • Di Prisco G (2000) Life style and biochemical adaptation in Antarctic fishes. J Mar Syst 27(1–3):253–265

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28(2):93–107

    Article  Google Scholar 

  • Edwards SL, Wall BP, Morrison-Shetlar A, Sligh S, Weakley JC, Claiborne JB (2005) The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus). J Exp Zoolog A Comp Exp Biol 303(6):464–475

    Article  Google Scholar 

  • Egginton S, Davison W (1998) Effects of environmental and experimental stress on Antarctic fish. In: Pörtner HO, Playle RC (eds) Cold Ocean Physiology. Society For Experimental Biology, Cambridge University Press, Cambridge, pp 299–326

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85(1):97–177

    Article  CAS  PubMed  Google Scholar 

  • Gibbs A, Somero GN (1990) Na+-K+-adenosine triphosphatase activities in gills of marine teleost fishes: Changes with depth, size and locomotory activity level. Mar Biol 106(3):315–321

    Article  CAS  Google Scholar 

  • Gutt J (ed) (2008) The expedition ANTARKTIS-XXIII/8 of the research vessel “Polarstern” in 2006/2007: ANT-XXIII/8; 23 Nov 2006–30 Jan 2007 Cape Town-Punta Arenas. Ber Polarforsch/Rep Polar Res

  • Heisler N (1993) Acid–base-regulation. In: Evans DH (ed) The physiology of fishes. CRC Press Inc, Boca Raton, pp 343–377

    Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus lonnberg) compared with three red-blooded Antartic fish. Comp Biochem Physiol 34(2):457–471

    Article  CAS  PubMed  Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact. Physiol Zool 47(3):137–152

    Google Scholar 

  • Houlihan DF, Hall SJ, Gray C, Noble BS (1988) Growth rates and protein turnover in Atlantic cod Gadus morhua. Can J Fish Aquat Sci 45:951–964

    Article  Google Scholar 

  • Houlihan DF, Carter CG, McCarthy ID (1995) Protein turnover in animals. In: Walsh PJ, Wright PA (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 1–32

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution to Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 996

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid–base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211(Pt 15):2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Jensen FB, Koldkjaer P, Bach A (2000) Anion uptake and acid–base and ionic effects during isolated and combined exposure to hypercapnia and nitrite in the freshwater crayfish, Astacus astacus. J Comp Physiol [B] 170(7):489–495

    CAS  Google Scholar 

  • Johansen K, Pettersson K (1981) Gill O2 consumption in a teleost fish, Gadus morhua. Respir Physiol 44(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, Clarke A, Ward P (1991) Temperature and metabolic rate in sedentary fish from the Antarctic, North Sea and Indo-West Pacific Ocean. Mar Biol 109(2):191–195

    Article  Google Scholar 

  • Kirk JM (1960) The mode of action of actinomycin D. Biochim Biophys Acta 42:167–169

    Article  CAS  PubMed  Google Scholar 

  • Krumschnabel G, Malle S, Schwarzbaum PJ, Wieser W (1994) Glycolytic function in goldfish hepatocytes at different temperatures: relevance for Na+ pump activity and protein synthesis. J Exp Biol 192:285–290

    CAS  PubMed  Google Scholar 

  • Kunzmann A (1990) Gill morphometrics of two Antarctic fish species Pleuragramma antarcticum and Notothenia gibberifrons. Polar Biol 11(1):9–18

    Article  Google Scholar 

  • Kunzmann A (1991) Blood physiology and ecological consequences in Weddell Sea fishes. Ber Polarforsch/Rep Polar Res 91:1–79

    Google Scholar 

  • Langenbuch M, Pörtner HO (2002) Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid–base variables. J Exp Biol 205(Pt 8):1153–1160

    CAS  PubMed  Google Scholar 

  • Langenbuch M, Pörtner HO (2003) Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthesis? J Exp Biol 206(Pt 22):3895–3903

    Article  CAS  PubMed  Google Scholar 

  • Larsen BK, Pörtner HO, Jensen FB (1997) Extra- and intracellular acid–base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128:337–346

    Article  CAS  Google Scholar 

  • Lin H, Pfeiffer D, Vogl A, Pan J, Randall D (1994) Immunolocalization of H+-ATPase in the gill epithelia of Rainbow Trout. J Exp Biol 195(1):169–183

    CAS  PubMed  Google Scholar 

  • Lyndon AR (1994) A method for measuring oxygen consumption in isolated perfused gills. J Fish Biol 44(4):707–715

    Article  Google Scholar 

  • Lyndon AR, Houlihan DF (1998) Gill protein turnover: costs of adaptation. Comp Biochem Physiol A Mol Integr Physiol 119(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Lyndon AR, Houlihan DF, Hall SJ (1992) The effect of short-term fasting and a single meal on protein synthesis and oxygen consumption in cod, Gadus morhua. J Comp Physiol [B] 162(3):209–215

    CAS  Google Scholar 

  • Mark FC, Hirse T, Pörtner HO (2005) Thermal sensitivity of cellular energy budgets in some Antarctic fish hepatocytes. Polar Biol 28:805–814

    Article  Google Scholar 

  • Michaelidis B, Spring A, Pörtner HO (2007) Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar Biol 150:1417–1429

    Article  Google Scholar 

  • Mommsen TP (1984) Metabolism of the fish gill. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press (Harcourt Brace Jovanovich, Publishers), New York, 10, pp 203–238

  • Morgan JD, Iwama GK (1999) Energy cost of NaCl transport in isolated gills of cutthroat trout. Am J Physiol 277(3 Pt 2):R631–R639

    CAS  PubMed  Google Scholar 

  • Morgan CD, Mills KC, Lefkowitz DL, Lefkowitz SS (1991) An improved colorimetric assay for tumor necrosis factor using WEHI 164 cells cultured on novel microtiter plates. J Immunol Methods 145(1–2):259–262

    Article  CAS  PubMed  Google Scholar 

  • Morris DJ, North AW (1984) Oxygen consumption of five species of fish from South Georgia. J Exp Mar Biol Ecol 78(1–2):75–86

    Article  Google Scholar 

  • Nobes CD, Brown GC, Olive PN, Brand MD (1990) Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem 265(22):12903–12909

    CAS  PubMed  Google Scholar 

  • Obrig TG, Culp WJ, McKeehan WL, Hardesty B (1971) The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246(1):174–181

    CAS  PubMed  Google Scholar 

  • Perry SF (1982) The regulation of hypercapnic acidosis in two salmonids, the freshwater trout (Salmo gairdneri) and the seawater salmon (Onchorynchus kisutch). Mar Hehav Physiol 9:73–79

    Article  Google Scholar 

  • Perry SF, Walsh PJ (1989) Metabolism of isolated fish gill cells: contribution of epithelial chloride cells. J Exp Biol 144:507–520

    CAS  PubMed  Google Scholar 

  • Perry SF, Beyers ML, Johnson DA (2000) Cloning and molecular characterisation of the trout (Oncorhynchus mykiss) vacuolar H+-ATPase B subunit. J Exp Biol 203(Pt 3):459–470

    CAS  PubMed  Google Scholar 

  • Perry SF, Furimsky M, Bayaa M, Georgalis T, Shahsavarani A, Nickerson JG, Moon TW (2003) Integrated responses of Na+/HCO3 cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis. Biochim Biophys Acta 1618(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep Sea Res II 53(8–10):1071–1104

    Article  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Ecology, physiology and climate change. Science 322(5902):690–692

    Article  PubMed  Google Scholar 

  • Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2417–2428

    PubMed  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated CO2 concentrations: lessons from animal physiology and earth history? J Oceanogr 60:705–718

    Article  Google Scholar 

  • Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199(Pt 8):1801–1807

    Google Scholar 

  • Richards BD, Fromm PO (1969) Patterns of blood flow through filaments and lamellae of isolated-perfused rainbow trout (Salmo gairdneri) gills. Comp Biochem Physiol 29:1063–1070

    Article  Google Scholar 

  • Rolfe DF, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 271(4 Pt 1):C1380–C1389

    CAS  PubMed  Google Scholar 

  • Rolfe DFS, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep 17(1):9

    Article  CAS  PubMed  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758

    CAS  PubMed  Google Scholar 

  • Schmid D, Burmester GR, Tripmacher R, Kuhnke A, Buttgereit F (2000) Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states. Biosci Rep 20(4):289–302

    Article  CAS  PubMed  Google Scholar 

  • Seidelin M, Brauner CJ, Jensen FB, Madsen SS (2001) Vacuolar-type H+-ATPase and Na+, K+-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water. Zoolog Sci 18(9):1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Shahsavarani A, Perry SF (2006) Hormonal and environmental regulation of epithelial calcium channel in gill of rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 291(5):R1490–R1498

    CAS  PubMed  Google Scholar 

  • Shuttleworth TJ (1972) A new isolated perfused gill preparation for the study of the mechanisms of ionic regulation in teleosts. Comp Biochem Physiol A Mol Integr Physiol 43(1):59–64

    CAS  Google Scholar 

  • Smith RW, Houlihan DF (1995) Protein synthesis and oxygen consumption in fish cells. J Comp Physiol [B] 165(2):93–101

    CAS  Google Scholar 

  • Smith MP, Dombkowski RA, Wincko JT, Olson KR (2006) Effect of pH on trout blood vessels and gill vascular resistance. J Exp Biol 209(Pt 13):2586–2594

    Article  CAS  PubMed  Google Scholar 

  • Sobell HM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci USA 82(16):5328–5331

    Article  CAS  PubMed  Google Scholar 

  • Somero GN, De Vries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156(772):257–258

    Article  CAS  PubMed  Google Scholar 

  • Somero GN, Fields PA, Hofmann GE, Weinstein RB, Kawall H (1998) Cold adaptation and stenothermy in Antarctic notothenioid fishes: what has been gained and what has been lost. In: Di Prisco G et al (eds) Fishes of Antarctica. A biological overview. Springer, Milan, pp 97–109

    Google Scholar 

  • Stagg RM, Shuttleworth TJ (1982) Na+, K+ ATPase, quabain binding and quabain-sensitive oxygen consumption in gills from Platichthys flesus adapted to seawater and freshwater. J Comp Physiol 147:93–99

    CAS  Google Scholar 

  • Sullivan G, Fryer J, Perry S (1995) Immunolocalization of proton pumps (H+-ATPase) in pavement cells of rainbow trout gill. J Exp Biol 198(Pt 12):2619–2629

    CAS  PubMed  Google Scholar 

  • Sullivan GV, Fryer JN, Perry SF (1996) Localization of mRNA for the proton pump (H+-ATPase) and Cl/HCO3 exchanger in the rainbow trout gill. Can J Zool 74(11):2095–2103

    Article  CAS  Google Scholar 

  • Takahashi M, Iwami T (1997) The summer diet of demersal fish at the South Shetland Islands. Antarct Sci 9(4):407–413

    Article  Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid–base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107(1):9–20

    CAS  PubMed  Google Scholar 

  • Wheeler KP, Whittam R (1962) Some properties of a kidney adenosine triphosphatase relevant to active cation transport. Biochem J 85:495–507

    CAS  PubMed  Google Scholar 

  • Whittam R (1962) The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J 84(1):110

    CAS  PubMed  Google Scholar 

  • Wieser W, Krumschnabel G (2001) Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects. Biochem J 355(Pt 2):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman C (1997) On the ecology of Arctic and Antarctic fish: activity, sensory capabilities and behaviour. Ber Polarforsch/Rep Polar Res 231:1–137

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zora Zittier, Olaf Heilmeyer, Karl-Hermann Kock and his group and the Crew of Jubany Station and RV ‘Polarstern’ during cruise ANTXXIII/8 for their unfailing and excellent help in fish catching, maintenance and preparation. Furthermore, we want to thank Erich Dunker for constructing the sophisticated respiration chambers and Gijs de Rue for expert support with the technical drawings. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. It is also a contribution to the PACES research program of the Alfred Wegener Institute and the BIOACD program funded by the Federal Ministry of Research, Germany. The study was supported by a student grant of the University of Bremen.

All animal experiments were conducted following German legislation. An approval of the work was issued by competent German authority (Freie Hansestadt Bremen, reference number 522-27-11/2-0; 28 November 2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans O. Pörtner.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 3821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deigweiher, K., Hirse, T., Bock, C. et al. Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. J Comp Physiol B 180, 347–359 (2010). https://doi.org/10.1007/s00360-009-0413-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0413-x

Keywords

Navigation