Skip to main content

A Review of the 1999 Chi-Chi, Taiwan, Earthquake from Modeling, Drilling, and Monitoring with the Taiwan Chelungpu-Fault Drilling Project

  • Chapter
  • First Online:
Earthquake Geology and Tectonophysics around Eastern Tibet and Taiwan

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

Abstract

Many high-quality strong motion stations were built prior to the occurrence of the destructive 1999 Chi-Chi earthquake, providing the most comprehensive study of the mechanism of such a damaging event. The general consistent feature in spatial slip distribution of the fault as a large slip of ~12 m at the northern portion of the fault from fault models and geological observation suggest the importance in understanding the physics of faulting of this large slip. The Taiwan Chelungpu-fault Drilling Project (TCDP) aided in the understanding of earthquake energy partitions by revealing the very fine grain (~nm) of the fault gouge with a millimeter-scale slip thickness for a single event. The dynamic parameters obtained from the kinematic slip inversion suggest a heterogeneous shear stress distribution and a complex stress-time history. The study incorporated the examination of the surface energy from identifying the fault gouge from the major slip zone, and the determination of the fracture energy from the dynamic parameters derived from the strong motion data. This allowed for the direct estimation of the energy partition of a single earthquake from the geological and seismological observations. The low-frictional coefficient obtained from temperature measurements made after drilling encouraged similar drilling projects to be undertaken after large earthquakes (e.g. 2008 Wenchuan and 2011 Tohoku earthquakes) to obtain frictional heating measurements. With the success of the TCDP drilling in the slip zone associated with the 1999 Chi-Chi earthquake, in situ borehole seismometers, referred to as the TCDP borehole seismic array (TCDPBHS), were installed to monitor the behavior of the fault zone after a large slip. This paper shows the dynamic parameters obtained from the kinematic slip inversion and, thus, gives a brief review of the current understanding of earthquake kinematics and dynamics. Seismic waveform modeling, drilling of the Chelungpu-fault, and the in situ monitoring of the fault zone after a large slip of ~12 m are all discussed. As a large number of related scientific papers have been published on this subject, some of these papers may not be properly addressed or referred to in this review article. These papers may be identified in the references of related articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res Solid Earth 84(B11):6140–6148

    Article  Google Scholar 

  2. Andrews DJ (1976) Rupture propagation with finite stress in antiplane strain. J Geophys Res 81(20):3575–3582

    Article  Google Scholar 

  3. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81(32):5679–5687

    Article  Google Scholar 

  4. Beroza GC, Spudich P (1988) Linearized inversion for fault rupture behavior: application to the 1984 Morgan Hill, California, earthquake. J Geophys Res Solid Earth 93(B6):6275–6296

    Article  Google Scholar 

  5. Chen KH, Furumura T, Rubinstein J, Rau RJ (2011) Observations of changes in waveform character induced by the 1999 Mw7. 6 Chi-Chi earthquake. Geophys Res Lett 38(23)

    Google Scholar 

  6. Day SM (1982) Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull Seismol Soc Am 72(6A):1881–1902

    Google Scholar 

  7. Doan ML, Brodsky EE, Kano Y, Ma KF (2006) In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan. Geophys Res Lett 33(16)

    Google Scholar 

  8. Guatteri M, Spudich P (2000) What can strong-motion data tell us about slip-weakening fault-friction laws? Bull Seismol Soc Am 90(1):98–116

    Article  Google Scholar 

  9. Hirono T, Sakaguchi M, Otsuki K, Sone H, Fujimoto K, Mishima T, Yeh EC (2008) Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault. Tectonophysics 449(1–4):63–84

    Article  Google Scholar 

  10. Hirono T, Yeh EC, Lin W, Sone H, Mishima T, Soh W, Kinoshita M (2007) Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-fault drilling project. J Geophys Res Solid Earth 112(B7)

    Google Scholar 

  11. Hung JH, Ma KF, Wang CY, Ito H, Lin W, Yeh EC (2009) Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu fault drilling project. Tectonophysics 466(3–4):307–321

    Article  Google Scholar 

  12. Husseini MI, Jovanovich DB, Randall MJ, Freund LB (1975) The fracture energy of earthquakes. Geophys J Int 43(2):367–385

    Article  Google Scholar 

  13. Ida Y (1974) Slow-moving deformation pulses along tectonic faults. Phys Earth Planet Inter 9(4):328–337

    Article  Google Scholar 

  14. Ide S, Takeo M (1997) Determination of constitutive relations of fault slip based on seismic wave analysis. J Geophys Res Solid Earth 102(B12):27379–27391

    Article  Google Scholar 

  15. Ishikawa T, Tanimizu M, Nagaishi K, Matsuoka J, Tadai O, Sakaguchi M, Kikuta H (2008) Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault. Nat Geosci 1(10):679

    Article  Google Scholar 

  16. Ji C, Helmberger DV, Wald DJ, Ma KF (2003) Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. J Geophys Res Solid Earth 108(B9)

    Google Scholar 

  17. Kano Y, Mori J, Fujio R, Ito H, Yanagidani T, Nakao S, Ma KF (2006) Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys Res Lett 33(14)

    Google Scholar 

  18. Kuo LW, Song SR, Yeh EC, Chen HF (2009) Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys Res Lett 36(18)

    Google Scholar 

  19. Lee SJ, Ma KF (2000) Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data. Terrest Atmos Ocean Sci 11(3):591–608

    Article  Google Scholar 

  20. Lee SJ, Chen HW, Ma KF (2006). Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake. J Geophys Res Solid Earth, 111(B11)

    Google Scholar 

  21. Lin YY, Ma KF, Kanamori H, Song TRA, Lapusta N, Tsai VC (2016) Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array. Geophys J Int 206(2):757–773

    Article  Google Scholar 

  22. Lin YY, Ma KF, Oye V (2012) Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophys J Int 190(1):665–676

    Article  Google Scholar 

  23. Lin W, Yeh EC, Ito H, Hung JH, Hirono T, Soh W, Song SR (2007) Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake. Geophys Res Lett 34(16)

    Google Scholar 

  24. Lin YY, Lapusta N (2018) Microseismicity simulated on asperity‐like fault patches: on scaling of seismic moment with duration and seismological estimates of stress drops. Geophys Res Lett. https://doi.org/10.1029/2018GL078650

  25. Ma KF, Lin YY, Lee SJ, Mori J, Brodsky EE (2012) Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan. Science 337(6093):459–463

    Article  Google Scholar 

  26. Ma KF, Mori J, Lee SJ, Yu SB (2001) Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):1069–1087

    Article  Google Scholar 

  27. Ma KF, Tanaka H, Song SR, Wang CY, Hung JH, Tsai YB, Sone H (2006) Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault drilling project. Nature 444(7118):473

    Article  Google Scholar 

  28. Ma KF, Wang JH, Zhao D (1996) Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan. J Phys Earth 44(2):85–105

    Article  Google Scholar 

  29. Ma KF, Brodsky EE, Mori J, Ji C, Song TRA, Kanamori H (2003) Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7. 6). Geophys Res Lett 30(5)

    Google Scholar 

  30. Ma KF, Chan CH, Stein RS (2005) Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake. J Geophys Res Solid Earth, 110(B5)

    Google Scholar 

  31. Ma KF, Song TRA, Lee SJ, Wu HI (2000) Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (Mw7. 6)—inverted from teleseismic data. Geophys Res Lett 27(20):3417–3420

    Google Scholar 

  32. Mikumo T, Olsen KB, Fukuyama E, Yagi Y (2003) Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults. Bull Seismol Soc Am 93(1):264–282

    Article  Google Scholar 

  33. Murakami H, Hashimoto T, Oshiman N, Yamaguchi S, Honkura Y, Sumitomo N (2001) Electrokinetic phenomena associated with a water injection experiment at the Nojima fault on Awaji Island, Japan. Island Arc 10(3–4):244–251

    Article  Google Scholar 

  34. Olsen KB, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science 278(5339):834–838

    Article  Google Scholar 

  35. Peyrat S, Olsen K, Madariaga R (2001) Dynamic modeling of the 1992 Landers earthquake. J Geophys Res Solid Earth 106(B11):26467–26482

    Article  Google Scholar 

  36. Shin TC, Kuo KW, Lee WHK, Teng TL, Tsai YB (2000) A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake. Seismol Res Lett 71(1):24–30; Tanaka H, Chen WM, Kawabata K, Urata N (2007) Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones: are these residuals of heat from faulting? Geophys Res Lett 34(1)

    Google Scholar 

  37. Song SR, Kuo LW, Yeh EC, Wang CY, Hung JH, Ma KF (2007) Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A. Terr Atmos Ocean Sci 18(2):243–269

    Article  Google Scholar 

  38. Tanaka H, Chen WM, Kawabata K, Urata N (2007) Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones: are these residuals of heat from faulting? Geophys Res Lett. https://doi.org/10.1029/2006GL028153

    Article  Google Scholar 

  39. Tanaka H, Chester FM, Mori JJ, Wang C-Y (2007) Drilling into the fault zones. Tectonophyiscs 443:123–290

    Article  Google Scholar 

  40. Tanaka H, Wang CY, Chen WM, Sakaguchi A, Ujiie K, Ito H, Ando M (2002) Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan. Terr Atmos Ocean Sci 13:227–251

    Article  Google Scholar 

  41. Tanaka H, Chen WM, Wang CY, Ma KF, Urata N, Mori J, Ando M (2006) Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake. Geophys Res Lett 33(16)

    Google Scholar 

  42. Wang YJ, Lin YY, Lee MC, Ma KF (2012) Fault zone Q values derived from Taiwan Chelungpu Fault borehole seismometers (TCDPBHS). Tectonophysics 578:76–86

    Article  Google Scholar 

  43. Wang YJ, Ma KF, Mouthereau F, Eberhart-Phillips D (2010) Three-dimensional Qp and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure. Geophys J Int 180:891–910

    Article  Google Scholar 

  44. Wang CY, Li CL, Yen HY (2002) Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics. Geophys Res Lett 29(16):1790. https://doi.org/10.1029/2001GL014496

  45. Wang YJ, Ma KF (2015) Investigation of the temporal change in attenuation within the ruptured fault zone of the 1999 Mw7. 3 Chi-Chi, Taiwan earthquake. Pure Appl Geophys 172(5):1291–1304

    Google Scholar 

  46. Wu YM, Zhao L, Chang CH, Hsu YJ (2008) Focal-mechanism determination in Taiwan by genetic algorithm. Bull Seismol Soc Am 98(2):651–661

    Article  Google Scholar 

  47. Wu H-Y, Ma K-F, Zoback M, Boness N, Ito H, Hung J-H, Hickman S (2007) Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophys Res Lett 34(1):L01303

    Google Scholar 

  48. Zeng Y, Chen CH (2001) Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):1088–1098

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Fong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, KF. (2021). A Review of the 1999 Chi-Chi, Taiwan, Earthquake from Modeling, Drilling, and Monitoring with the Taiwan Chelungpu-Fault Drilling Project. In: Lo, CH., Xu, X., Chang, WY., Ando, M. (eds) Earthquake Geology and Tectonophysics around Eastern Tibet and Taiwan. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-15-6210-5_4

Download citation

Publish with us

Policies and ethics