Skip to main content

The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism

  • Chapter

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

After three decades of nearly unchallenged wisdom that a large impact (Chicxulub) on Yucatan caused the end-Cretaceous mass extinction, this theory is facing its most serious challenge from the Chicxulub impact itself, as based on evidence in Texas and Mexico and from Deccan volcanism in India. Data generated from over 150 Cretaceous–Tertiary (KT) boundary sequences to date make it clear that the long-held belief in the Chicxulub impact as the sole or even major contributor to the KT mass extinction is not supported by evidence. The stratigraphic position of the Chicxulub impact ejecta spherules in NE Mexico and Texas and the impact breccia within the crater on Yucatan demonstrate that this impact predates the KTB by about 300,000 years. Planktic foraminiferal and stable isotope analyses across the primary impact ejecta layer reveal that not a single species went extinct as a result of this impact and no significant environmental changes could be determined. The catastrophic effects of this impact have been vastly overestimated. In contrast, recent advances in Deccan volcanic studies indicate three volcanic phases with the smallest at 67.5 Ma, the main phase at the end of the Maastrichtian (C29r), and the third phase in the early Danian C29r/C29n transition (Chenet et al. 2007). The main phase of eruptions occurred rapidly, was marked by the longest lava flows spanning 1500 km across India, and ended coincident with the KT boundary. The KT mass extinction may have been caused by these rapid and massive Deccan lava and gas eruptions that account for ∼80% of the entire 3500 m thick Deccan lava pile.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adatte T, Stinnesbeck W, Keller G (1996) Lithostratigraphic and mineralogical correlations of near-K/T boundary clastic sediments in northeastern Mexico: implications for mega-tsunami or sea level changes? Geol Soc Am Spec Paper 307:197–210

    Google Scholar 

  • Affolter M (2000) Etude des depots clastiques de la límite Cretace–Tertiaire dans la region de la Sierrita, Nuevo Leon, Mexique, MS thesis. Geological Institute University of Neuchatel, Neuchatel, Switzerland, 133p

    Google Scholar 

  • Alegret L, Molina E, Thomas E (2001) Benthic foraminifera at the Cretaceous–Tertiary boundary around the Gulf of Mexico. Geology 29:891–894

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–1108

    Google Scholar 

  • Arenillas I, Arz JA, Grajales-Nishimura JM, Murillo-Muneton G, Alvarez W, Camargo-Zanguera A, Molina E, Rosales-Dominguez C (2006) Chicxulub impact event is Cretaceous/Paleogene boundary in age: new micropaleontological evidence. Earth Planet Sci Lett 249:241–257

    Google Scholar 

  • Arz JA, Alegret L, Arenillas I (2004) Foraminiferal biostratigraphy and environmental reconstruction at the Yaxcopoil-1 drillcore, Chicxulub crater, Yucata´n Peninsula. Meteoritics Planet Sci 39:1099–1111

    Google Scholar 

  • Badve RM, Ghare MA (1977) Palaeoecological aspects of the Bagh Beds, India. Recent Res Geol 4:388–402

    Google Scholar 

  • Baksi AK (2005) Comment on “40Ar/39Ar dating of the Rajahmundry Traps, easternIndia and their relations to the Deccan Traps” by Knight et al. [Earth Planet Sci Lett 208(2003):85–99]. Earth Planet Sci Lett 239:368–373

    Google Scholar 

  • Baksi AK, Byerly GR, Chan LH, Farrar E (1994) Intracanyon flows in the Deccan province, India: case history of the Rajahmundry Traps. Geology 22:605–608

    Google Scholar 

  • Barrera E, Keller G (1990) Stable isotope evidence for gradual environmental changes and species survivorship across the Cretaceous/Tertiary boundary. Paleoceanography 5:867–890

    Google Scholar 

  • Baum GR, Vail PR (1988) Sequence stratigraphic concepts applied to Paleogene outcrops, Gulf and Atlantic basins. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level: an integrated approach. Soc Econ Paleontol Mineral, Spec Pub, vol 42, pp 309–327

    Google Scholar 

  • Bhandari A (1995) Ostracodes from the inter-trappean beds near Duddukuru, Andhra Pradesh and a note on their age and paleoecological significance. Indian J Petrol Geol 4:89–107

    Google Scholar 

  • Blum JD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Schuraytz BC, Sharpton VL (1993) Isotopic comparison of K–T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364:325–327

    Google Scholar 

  • Bourgeois I, Hansen TA, Wiberg PL, Kauffman EG (1988) A tsunami deposit at the Cretaceous–Tertiary boundary in Texas. Science 241:567–570

    Google Scholar 

  • Cande S, Kent DV (1991) Revised calibration of the geomagnetic polarity timescalefor the Late Cretaceous and Cenozoic. J Geophys Res 100:159–190

    Google Scholar 

  • Chenet A-L, Quidelleur X, Fluteau F, Courtillot V (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15

    Google Scholar 

  • Chenet A-L, Fluteau F, Courtillot V, Gerard M, Subbarao KV (2008) Determination of rapid Deccan eruptions across the KTB using paleomagnetic secular variation: (I) Results from 1200 m thick section in the Mahabaleshwar escarpment. J Geophys Res 113:B04101

    Google Scholar 

  • Chiplonkar GW, Badve RM (1968) Age and affinities of the Bagh fauna – a Reassessment. Symposium Deccan Trap Country Special Issue. Bull Indian Nat Sci Acad (issued 1973) 45:19–29

    Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinctions. Cambridge University Press, Cambridge, 171p

    Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalt events. Curr Res Geosci 335:113–140

    Google Scholar 

  • Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Capetta H (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet, Sci Lett 80:361–374

    Google Scholar 

  • Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau MG, Besse J (1988) Deccanflood basalts and the Cretaceous/Tertiary boundary. Nature 333:843–846

    Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R, Féraud G, Robin E, Hofmann C, Bhandari N, Ghevariya ZG (2000) Cosmic markers, 40Ar/39Ar dating and Paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth Planet, Sci Lett 182:137–156

    Google Scholar 

  • Cripps JA, Widdowson M, Spicer RA, Jolley DW (2005) Coastal ecosystem response to late stage Deccan Trap volcanism: the post-K–T boundary (Danian) palynofacies of Mumbai (Bombay), west India. Paleogeogr Paleoclimatol Palaeoecol 216:303–332

    Google Scholar 

  • Donovan AD, Baum GR, Blechschmidt GL, Loutit TS, Pflum CE, Vail PR (1988) Sequence stratigraphic setting of the Cretaceous–Tertiary boundary in central Alabama. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level: an integrated approach. Soc Econ Paleont Mineral, Spec Pub, vol 42, pp 299–307

    Google Scholar 

  • Dressler BO, Sharpton VL, Morgan J, Buffler R, Smit J, Stoeffler D, Urrutia J (2003) Investigating a 65-Ma-old smoking gun: deep drilling of the Chicxulub impact structure. EOS Trans, Am Geophys Union 84(14):125–130

    Google Scholar 

  • Dressler BO, Sharpton VL, Schwandt CS, Ames D (2004) Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: petrography, geochemistry and depositional environment. Meteoritics Planet Sci 39:857–878

    Google Scholar 

  • Duncan RA, Pyle DG (1988) Rapid eruption of the Deccan flood basalt at the Cretaceous/Tertiary boundary. Nature 333:841–8443

    Google Scholar 

  • Ekdale AA, Stinnesbeck W (1998) Ichnology of Cretaceous–Tertiary (K/T) boundary beds in northeastern Mexico. Palaios 13:593–602

    Google Scholar 

  • Gale A S (2006) The Cretaceous–Palaeogene boundary on the Brazos River, Falls County, Texas: is there evidence for impact-induced tsunami sedimentation? Proc Geol Assoc 117:173–185

    Google Scholar 

  • Galloway WE, Bebout DG, Fisher WL, Dunlap JB Jr, Cabrera-Castro R, Lugo-Rivera JE, Scott TM (1991) Cenozoic. In: Salvador A (ed) The Gulf of Mexico basin: the geology of North America, vol J. Geol Soc Am, Boulder, CO, pp 245–324

    Google Scholar 

  • Gertsch B, Keller G, Adatte T, Berner Z (2011, in press) Platinum Group Elements (PGE) geochemistry of Brazos sections, Texas, USA. In: Keller G, Adatte T (eds) The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas, SEPM Special Publication No. 100

    Google Scholar 

  • Gilmore JS, Knight JD, Orth CL, Pillmore CL, Tschudy RH (1984) Trace element patterns at a non-marine Cretaceous–Tertiary boundary. Nature 307:224–228

    Google Scholar 

  • Grachev AF, Korchagin OA, Kollmann HA, Pechersky DM, Tsel’movich VA (2005) Anew look at the nature of the transitional layer at the K/T boundary near Gams, Eastern Alps, Austria, and the problem of the mass extinction of the biota. Russian J Earth Sci 7(6)ES600:1–45

    Google Scholar 

  • Graup G, Spettel B, Herm D, Weidich KF (1989) Mineralogy and phase-chemistry of an ir-enriched pre-K/T layer from the Lattengebirge, Bavarian Alps, and significance for the KTB problem. Earth Planet Sci Lett 95:271–290

    Google Scholar 

  • Hansen T, Farrand RB, Montgomery HA, Billman HG, Blechschmidt G (1987) Sedimentology and extinction patterns across the Cretaceous–Tertiary boundary interval in east Texas (USA). Cretaceous Res 8:229–252

    Google Scholar 

  • Hansen TA, Upshaw B III, Kauffman EG, Gose W (1993) Patterns of molluscan extinction and recovery across the Cretaceous–Tertiary boundary in east Texas; report on new outcrops. Cretaceous Res 14:685–706

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) The chronology of fluctuating sea level since the Triassic. Science 235:1157–1167

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level: an integrated approach. Soc Econ Paleontol Mineral Spec Pub, vol 42, pp 71–108

    Google Scholar 

  • Harting M (2004) Zum Kreide/Tertiar-Ubergang in NE Mexico: geochemische characterisiering der Chicxulub Impactejekta. Karlsruhe University, 131p

    Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Jacobsen S, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Google Scholar 

  • Hofmann C, Féraud G, Courtillot V (2000) 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet Sci Lett 180:13–27

    Google Scholar 

  • Izett GA (1990) The Cretaceous/Tertiary boundary interval, Raton Basin, Colorado and New Mexico, and its content of shock-metamorphosed minerals: evidence relevant to the K/T boundary impact-extinction hypothesis. Geol Soc Am, Spec Pap, vol 249, 100 pp

    Google Scholar 

  • Izett G, Dalrymple GB, Snee LW (1991) 40Ar/39Ar age of K–T boundary tektites from Haiti. Science 252:159–1543

    Google Scholar 

  • Jaiprakash BC, Singh J, Raju DSN (1993) Foraminiferal events across the K/T boundary and age of Deccan volcanism in Palakollu area, Krishna–Godavari Basin, India. J Geol Soc India 41:105–117

    Google Scholar 

  • Jay AE, Widdowson M (2008) Stratigraphy, structure and volcanology of the south-east Deccan continental flood basalt province: implications for eruptive extent and volumes. J Geol Soc 165:177–188

    Google Scholar 

  • Jay AE, MacNiocaill C, Widdowson M, Self S, Turner W (2009) NewPalaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: implications for the volcanostratigraphic architecture of Continental Flood Basalt Provinces. J Geophys Res 166:1–12. doi:10.1144/0016-76492007-150

    Google Scholar 

  • Jerram DA, Widdowson M (2005) The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos 79:385–405

    Google Scholar 

  • Jiang MJ, Gartner S (1986) Calcareous nannofossil succession across the Cretaceous–Tertiary boundary in east-central Texas. Micropaleontology 32:232–255

    Google Scholar 

  • Keller G (1988) Extinctions, survivorship and evolution across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Marine Micropal 13:239–263

    Google Scholar 

  • Keller G (1989) Extended K/T boundary extinctions and delayed populational change in planktic Foraminiferal faunas from Brazos River Texas. Paleoceanography 4:287–332

    Google Scholar 

  • Keller G (1996) The K/T mass extinction in planktic foraminifera biotic constraints for catastrophe theories. In: MacLeod N, Keller G (eds) The Cretaceous–Tertiary mass extinction: biotic and environmental events. Norton Press, New York, pp 63–100

    Google Scholar 

  • Keller G (2001) The end-Cretaceous mass extinction: year 2000 assessment. J Planet Space Sci 49:817–830

    Google Scholar 

  • Keller G (2005) Impacts, volcanism and mass extinctions: random coincidence or cause and effect? Australian J Earth Sci 52:725–757

    Google Scholar 

  • Keller G (2008a) Impact stratigraphy: old principle, new reality. Geol Soc Am, Spec Pap 437:147–178

    Google Scholar 

  • Keller G (2008b) Cretaceous climate, volcanism, impacts and biotic effects. Cretaceous Res 29:754–771

    Google Scholar 

  • Keller G, Abramovich S (2009) Lilliput Effect in late Maastrichtian planktic foraminifera: response to environmental stress. Palaeogeogr Palaeoclimatol Palaeoecol 284:47–62

    Google Scholar 

  • Keller G, Barron JA (1983) Paleoceanographic implications of Miocene deep-sea hiatuses, Geol Soc Am Bull 94:1–30

    Google Scholar 

  • Keller G, Pardo A (2004) Disaster opportunists Guembelitridae: index for environmental catastrophes. Marine Micropal 53:83–116

    Google Scholar 

  • Keller G, Stinnesbeck W (1996) Sea-level changes, clastic deposits and megatsunamis across the Cretaceous–Tertiary boundary. In: MacLeod N, Keller G (eds) Cretaceous–Tertiary mass extinctions. WW Norton & Co, New York, pp 415–450

    Google Scholar 

  • Keller G, Stinnesbeck W (2002) Slumping and a sandbar deposit at the Cretaceous–Tertiary boundary in the El Tecolote section (Northeastern Mexico): an impact-induced sediment gravity flow – comment. Geology 30:382–383

    Google Scholar 

  • Keller G, Barrera E, Schmitz B, Mattson E (1993) Gradual mass extinction, species survivorship and long-term environmental changes across the Cretaceous–Tertiary Boundary in high latitudes. Geol Soc Am Bull 105:979–997

    Google Scholar 

  • Keller G, Stinnesbeck W, Lopez-Oliva JG (1994a) Age, deposition and biotic effects of the Cretaceous/Tertiary boundary event at Mimbral, NE Mexico. Palaios 9:144–157

    Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, MacLeod N, Lowe DR (1994b) Field guide to Creataceous–Tertiary boundary sections in northeastern Mexico, vol 827. Lunar and Planetary Institute, LPI Contribution, Houston,110p

    Google Scholar 

  • Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254

    Google Scholar 

  • Keller G, Lopez-Oliva JG, Stinnesbeck W, Adatte T (1997) Age, stratigraphy and deposition of near K/T siliciclastic deposits in Mexico: relation to bolide impact? Geol Soc Am Bull 109:410–428

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stuben D, Kramar U, Berner Z, Li L, von Salis Perch-Nielsen K (1998) The Cretaceous–Tertiary transition on the shallow Saharan Platform in southern Tunisia. GeoBios 30:951–975

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stueben D, Berner Z (2001) Age, Chemo- and Biostratigraphy of Haiti spherule-rich deposits: a Multi-event K–T scenario. Canadian J Earth Sci 38:197–227

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Affolter M, Schilli L, Lopez-Oliva JG (2002) Multiple spherule layers in the late Maastrichtian of northeastern Mexico. Geol Soc Am Spec Pub 356:145–161

    Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Stüben D (2003a) Multiple impacts across the Cretaceous–Tertiary boundary. Earth-Sci Rev 62:327–363

    Google Scholar 

  • Keller G, Stinnesbeck W, Adatte T, Holland B, Stueben D, Harting M, De Leon C, de la Cruz J (2003b) Spherule deposits in Cretaceous–Tertiary boundary sediments in Belize and Guatemala. J Geol Soc London 160:783–795

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Rebolledo-Vieyra M, Urrutia Fucugauchi J, Kramar U, Stueben D (2004a) Chicxulub crater predates K–T mass extinction. Proc Natl Acad Sci USA 101:3753–3758

    Google Scholar 

  • Keller G, Adatte T, Stinnesbeck W, Stüben D, Berner Z, Harting M (2004b) More evidence that the Chicxulub impact predates the K/T mass extinction. Meteoritics Planet Sci 39:1127–1144

    Google Scholar 

  • Keller G, Adatte T, Harting M, Berner Z, Baum G, Prauss M, Tantawy AA, Stueben D (2007a) Chicxulub impact predates the K–T boundary: new evidence from Texas. Earth Planet Sci Lett 255:339–356

    Google Scholar 

  • Keller G, Adatte T, Tantawy AA, Berner Z, Stueben D (2007b) High Stress Late Cretaceous to early Danian paleoenvironment in the Neuquen Basin, Argentina. Cretaceous Res 28:939–960

    Google Scholar 

  • Keller G, Adatte T, Baum G, Berner Z (2008a) Reply to ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ comment by Schulte et al. Earth Planet Sci Lett 269:620–628. doi:10.1016/j.epsl.2007.12.025

    Google Scholar 

  • Keller G, Adatte T, Gardin S, Bartolini A, Bajpai S (2008b) Main Deccan volcanism phase ends near the K–T boundary: evidence from the Krishna-Godavari Basin, SE India. Earth Planet Sci Lett 268:293–311. doi:101016/j.epsl.2008.01.015

    Google Scholar 

  • Keller G, Abramovich S, Berner Z, Adatte T (2009a) Biotic effects of the Chicxulub impact, K–T catastrophe and sea-level change in Texas. Palaeogeogr Palaeoclimatol Palaeoecol 271:52–68. doi:10.1016/j.palaeo.2008.09.007

    Google Scholar 

  • Keller G, Sharma R, Khosla A, Khosla SC, Bajpai S (2009b) Early Danian planktic foraminifera from Intertrappean beds at Jhilmili, Chhindwara district, Madhya Pradesh, India. J Foram Res 39:40–55

    Google Scholar 

  • Keller G, Adatte T, Pardo Juez A, Lopez Oliva JG (2009c) New evidence concerning the age and biotic effects of the Chicxulub impact in NE Mexico. J Geol Soc London 166:393–411

    Google Scholar 

  • Keller G, Adatte T, Bajpai S, Mohabey DM, Widdowson M, Khosla A, Sharma R, Khosla SC, Gertsch B, Fleitmann D, Sahni A (2009d) K–T transition in Deccan Traps of central India marks major marine seaway across India. EPSL 282:10–23

    Google Scholar 

  • Khosla SC, Nagori ML (2002) Ostracodes from the Inter-trappean beds (Early Paleocene) of the east coast of India. Paleontol Res 6:191–210

    Google Scholar 

  • Klaus A, Norris RD, Kroon D, Smit J (2000) Impact-induced mass wasting at the K–T Boundary, Blake Nose, western North Atlantic. Geology 28:319–322

    Google Scholar 

  • Knight KB, Renne PR, Halkett A, White N (2003) 40Ar/39Ar dating of the Rajahmundry traps, Eastern India and their relationship to the Deccan Traps. Earth Planet Sci Lett 208:85–99

    Google Scholar 

  • Knight KB, Renne PR, Baker J, Waight T, White N (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to theDeccan Traps: discussion by AK Baksi. Earth Planet Sci Lett 239:374–382

    Google Scholar 

  • Koeberl C (1993) Chicxulub crater, Yucatan: Tektites, impact glasses, and the geochemistry of target rocks and breccias. Geology 21:211–214

    Google Scholar 

  • Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr Palaeoclimatol, Palaeoecol 255:4–21

    Google Scholar 

  • Lindenmaier F (1999) Geologie und Geochemie an der Kreide/Tertiär-Grenze im Nordosten von Mexiko. Diplomarbeit, Institut für Regionale Geologie, Karlsruhe, 90p

    Google Scholar 

  • Lopez-Oliva JG (1996) Stratigraphy of the Cretaceous–Tertiary (K–T) boundary transition in northeastern and east-central Mexico. Princeton University, Princeton, 246p

    Google Scholar 

  • Lopez-Oliva JG, Keller G (1996) Age and stratigraphy of near-K/T boundary clastic deposits in NE Mexico. Geol Soc Am, Spec Pap 307:227–242

    Google Scholar 

  • Lopez-Ramos E (1973) Estudio geológico de la Peninsula de Yucatan. Boletin Associacion Mexicana de Geologos Petroleros 25:23–76

    Google Scholar 

  • Lopez-Ramos E (1975) Geological summary of the Yucatan Peninsula. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins. The Gulf of Mexico and the Caribbean, vol 3. Plenum Press, New York, pp. 257–282

    Google Scholar 

  • Loutit TS, Hardenbol J, Vail PR, Baum GR (1988) Condensed sections: the key to age dating and correlation of continental margin sequences. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes: an integrated approach. Soc Econ Paleontol Mineral Spec Pub, vol 42, pp. 183–213

    Google Scholar 

  • MacLeod N, Keller G (1991) Hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary. Geology 19:497–501

    Google Scholar 

  • MacLeod N, Ortiz N, Fefferman N, Clyde W, Schulter C, MacLean J (2000) Phenotypic response of foraminifera to episodes of global environmental change. In: Culver SJ, Rawson P (eds) Biotic response to global environmental change: the last 145 million years. Cambridge University Press, Cambridge, pp. 51–78

    Google Scholar 

  • MacLeod KG, Whitney DL, Huber BT, Koeberl C (2007) Impact and extinction in remarkably complete Cretaceous–Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geol Soc Am Bull 119:101–115. doi:10.1130/B25955.1

    Google Scholar 

  • Martínez-Ruiz F, Ortega-Huertas M, Palomo-Delgado I, Smit J (2002) Cretaceous–Tertiary boundary at Blake Nose (Ocean drilling Program Leg 171B): a record of the Chicxulub impact ejecta. Geol Soc Am, Spec Pap 356:189–200

    Google Scholar 

  • Maurasse FJMR, Sen G (1991) Impacts, tsunamis and the Haitian Cretaceous–Tertiary boundary layer. Science 252:1690–1693

    Google Scholar 

  • Maurrasse FJMR, Lamolda MA, Aguado R, Peryt D, Sen G (2005) Spatial and temporal variations of the Haitian K/T boundary record: implications concerning the event or events. J Iberian Geol 31:113–133

    Google Scholar 

  • McLean DM (1978) A terminal Mesozoic “Greenhouse”: lessons from the past. Science 201:401–406

    Google Scholar 

  • McLean DM (1985) Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Res 6:235–259

    Google Scholar 

  • Meyerhoff AA, Lyons JB, Officer CB (1994) Chicxulub structure: a volcanic sequence of Late Cretaceous age. Geology 22:3–4

    Google Scholar 

  • Molina E, Alegret L, Arenillas I, Arz J A, Gallala N, Hardenbol J, von Salis K, Steurbraut E, Vandenberghe N, Zaghbib-Turki D (2006) The global boundary stratotype section and point for the base of the Danian stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia – original definition and revision. Episodes 29:263–273

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact stratigraphy. Lecture Notes in Earth Sciences, no. 93. Springer, Heidelberg, Germany, 364p

    Google Scholar 

  • Morgan JW, Ganapathy R, Krähenbühl U (1975) Meteoritic trace elements in lunar rock 14321, 184. Geoch Cosmoch Acta 39:261–264

    Google Scholar 

  • Norris RD, Huber BT, Self-Trail J (1999) Synchroneity of the K–T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology 27:419–422

    Google Scholar 

  • Norris RD, Firth J, Blusztajn Ravizza G (2000) Mass failure of the North Atlantic margin triggered by the Cretaceous–Paleogene bolide impact. Geology 28:1119–1122

    Google Scholar 

  • Olsson RK, Miller KG, Browning JV, Habib D, Sugarmann PJ (1997) Ejecta layer at the Cretaceous–Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology 25:759–762

    Google Scholar 

  • Pande K, Pattanayak SK, Subbarao KV, Navaneethakrishna P, Venkatesan TR (2004) 40Ar/39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps. Proc Indian Acad Sci 113:755–758

    Google Scholar 

  • Pardo A, Ortiz N, Keller G (1996) Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain. In: MacLeod N, Keller G (eds) The Cretaceous–Tertiary mass extinction: biotic and environmental effects. Norton Press, New York, pp. 157–191

    Google Scholar 

  • Poag CW, Plescia JB, Molzer PC (2002) Ancient impact structures on modern continental shelves: the Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. Deep Sea Res Pt II(49):1081–1102

    Google Scholar 

  • Prasad B, Pundeer BS (2002) Palynological events and zones in Cretaceous–Tertiary boundary sediments of Krishna-Godavari and Cauvery basins, India. Palaeontographica Abt B 262:39–70

    Google Scholar 

  • Raju DSN, Jaiprakash BC, Kumar A, Saxena RK, Dave A, Chatterjee TK, Mishra CM (1994) The magnitude of hiatus and sea-level changes across K/T boundary in Cauvery and Krishna-Godavari basins, India. J Geol Soc India 44:301–315

    Google Scholar 

  • Raju DSN, Jaiprakash BC, Kumar A, Saxena RK, Dave A, Chatterjee TK, Mishra CM (1995) Age of Deccan volcanism across KTB in Krishna-Godavari Basin: new evidences. J Geol Soc India 45:229–233

    Google Scholar 

  • Rocchia R, Robin E, Froget L, Gayraud J (1996) Stratigraphic distribution of extraterrestrial markers at the Cretaceous–Tertiary boundary in the Gulf of Mexico area: implications for the temporal complexity of the event. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous–Tertiary boundary event and other catastrophes in Earth history. Geol Soc Am, Boulder, Colorado, Spec Pap, vol 307, pp. 279–286

    Google Scholar 

  • Sahni A (1983) Upper Cretaceous Palaeobiogeography of Peninsular India and the Cretaceous–Paleocene transition: the vertebrate evidence. In: Maheshwari HK (ed) Cretaceous of India. Indian Association. Palynostratigraphers, Lucknow, pp. 128–140

    Google Scholar 

  • Sawlowicz Z (1993) Iridium and other platinum-group elements as geochemical markers in sedimentary environments. Paleogeogr Paleoclimatol Paleoecol 104:253–270

    Google Scholar 

  • Saxena RK, Misra CN (1994) Time and duration of Deccan volcanism in the Rezole area, Krishna-Godavari Basin, India. Curr Sci 66:74–76

    Google Scholar 

  • Schilli L (2000) Etude de la limite K–T dans la région de la Sierrita, Nuevo Leon, Mexique, MS thesis, Geological Institute, University of Neuchatel, Neuchatel, Switzerland, 138p

    Google Scholar 

  • Schulte P (1999) Geologisch-sedimentologische Untersuchungen des Kreide/Tertiär (K/T)-Übergangs im Gebiet zwischen La Sierrita und El Toro, Nuevo Leon, Mexiko: Diplomarbeit, Universität Karlsruhe, Institut für Regionale Geologie, Karlsruhe, Germany, 134p

    Google Scholar 

  • Schulte P, Stinnesbeck W, Steuben D, Kramar U, Berner Z, Keller G, Adatte T (2003) Multiple slumped? Chicxulub ejecta deposits with iron-rich spherules and quenched carbonates from the K/T transition, La Sierrita, NE Mexico. J Int Earth Sci 92:114–142

    Google Scholar 

  • Schulte P, Speijer RP, Mai H, Kontny A (2006) The Cretaceous–Paleogene (K–P) boundary at Brazos, Texas: sequence stratigraphy, depositional events and the Chicxulub impact. Sed Geol 184 77–109

    Google Scholar 

  • Schulte P, Speijer RP, Brinkhuis H, Kontny A, Caleys P, Galeotti S, Smit J (2008) Comment on the paper, ‘Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas’ by Keller et al. (2007). Earth Planet Sci Lett 269:613–619. doi:10.1016/j.epsl.2007.11.066

    Google Scholar 

  • Schulte P, and 40 others (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327:1214–1218

    Google Scholar 

  • Self S, Jay AE, Widdowson M, Keszthelyi LP (2008a) Correlation of the Deccan and Rajahmundry Trap lavas: are these the longest and largest lava flows on Earth? J Vocanol Geothermal Res 172:3–19

    Google Scholar 

  • Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008b) Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive gas release. Science 319:1654–1657

    Google Scholar 

  • Sheth HC, Pande K, Bhutani R (2001) 40Ar/39Ar age of a national geological monument: the Gilbert Hill basalt, Deccan Traps, Bombay. Curr Sci 80:1437–1440

    Google Scholar 

  • Sigurdsson H, Bonté P, Turpin L, Chaussidon M, Metrich N, Steinberg M, Pradel P, D’Hondt S (1991) Geochemical constraints on source region of Cretaceous–Tertiary impact glasses. Nature 353:839–842

    Google Scholar 

  • Smit J (1999) The global stratigraphy of the Cretaceous–Tertiary boundary impact ejecta. Ann Rev Earth Planet Sci 27:75–113

    Google Scholar 

  • Smit J, Montanari A, Swinburne NHM, Alvarez W, Hildebrand A, Margolis SV, Claeys P, Lowerie W, Asaro F (1992) Tektite-bearing deep-water clastic unit at the Cretaceous–Tertiary boundary in northeastern Mexico. Geology 20:99–104

    Google Scholar 

  • Smit J, Montanari A, Alvarez W (1994) Tsunami-generated beds at the KT boundary in northeastern Mexico. In: Keller G, Stinnesbeck W, Adatte T, MacLeod N, Lowe DR (eds) Field guide to Cretaceous–Tertiary boundary sections northeaster Mexico, vol 827. Lunar and Planetary Institute, Houston, pp. 95–101

    Google Scholar 

  • Smit J, Roep TB, Alvarez W, Montanari A, Claeys P, Grajales-Nishimura JM, Bermudez J (1996) Coarse-grained clastic sandstone complex at the K/T boundary around the Gulf of Mexico: deposition by tsunami waves induced by the Chicxulub impact. Geol Soc Am Spec Pap 307:151–182

    Google Scholar 

  • Smit J, van der Gaast S, Lustenhouwer W (2004) Is the transition to post-impact rock complete? Some remarks based on XRF scanning electron microprobe and thin section analyses of the Yaxcopoil-1 core. Meteoritics Planetary Sci 39:1113–1126

    Google Scholar 

  • Sohl NF, Martinez RE, Salmerón-Ureña P, Soto-Jaramillo F (1991) Upper Cretaceous. In: Salvador A (ed) The Gulf of Mexico basin: the geology of North America. Journal of Geological Society of America, Vol J. Boulder, CO, pp. 205–244

    Google Scholar 

  • Soria AR, Llesa CL, Mata MP, Arz JA, Alegret L, Arenillas I, Melendez A (2001) Slumping and a sandbar deposit at the Cretaceous–Tertiary boundary in the El Tecolote section (northeastern Mexico): an impact-induced sediment gravity flow. Geology 29:231–234

    Google Scholar 

  • Stinnesbeck W, Barbarin JM, Keller G, Lopez-Oliva JG, Pivnik D, Lyons J, Officer C, Adatte T, Graup G, Rocchia R, Robin E (1993) Deposition of channel deposits near the Cretaceous–Tertiary boundary in northeastern Mexico: Catastrophic or “normal” sedimentary deposits? Geology 21:797–800

    Google Scholar 

  • Stinnesbeck W, Keller G, Adatte T, Lopez-Oliva JG, MacLeod N (1996) Cretaceous–Tertiary boundary clastic deposits in northeastern Mexico: impact tsunami or sea level lowstand? In: MacLeod N, Keller G (eds) Cretaceous–Tertiary mass extinctions: biotic and environmental changes. WW Norton & Company, New York, pp. 471–518

    Google Scholar 

  • Stinnesbeck W, Keller G, Adatte T, Harting M, Stueben D, Istrate G (2004) Yaxcopoil-1 and the Chicxulub impact. Int J Earth Sci (Geol Rundsch) 93:1042–1065

    Google Scholar 

  • Stüben D, Kramar U, Harting M, Stinnesbeck W, Keller G (2005) High-resolution geochemical record of Cretaceous–Tertiary boundary sections in Mexico: new constraints on the K/T and Chicxulub events. Geochemica et Cosmochimica Acta 69(10):2559–2579

    Google Scholar 

  • Subbarao KV, Pathak S (1993) Reversely magnetized flows, Rajahmundry, Andhra Pradesh. J Geol Soc India 41:71–72

    Google Scholar 

  • Swisher CC, Grajales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedillo-Pardoa E, Maurrasse FJ-MR, Curtis GH, Smit J, McWilliams MO (1992) Coeval 40Ar/39Ar ages of 65 million years ago from Chicxulub crater melt rock and Cretaceous–Tertiary boundary tektites. Science 257:954–958

    Google Scholar 

  • Tredoux M, de Wit MJ, Hart RJ, Linsay NM, Verhagen B, Sellschop JPF (1988) Chemostratigraphy across the Cretaceous–Teriary boundary and a critical assessment of the iridium anomaly. J Geol 97:585–605

    Google Scholar 

  • Vandamme D, Courtillot V (1992) Paleomagnetic constraints on the structure of the Deccan Traps. Phys Earth Planet Int 74:241–261

    Google Scholar 

  • Vandamme D, Courtillot V, Besse J, Montigny R (1991) Paleomagnetism and age determinations of the Deccan traps (India): results of a Nagpur–Bombay traverse and review of earlier work. Rev Geophys Space Phys 29:159–190

    Google Scholar 

  • Venkatesan TR, Pande K, Gopalan K (1993) Did Deccan volcanism pre-date the Cretaceous/Tertiary transition? Earth Planet Sci Lett 119:181–189

    Google Scholar 

  • Venkatesan TR, Pande K, Ghevariya ZG (1996) 40Ar–39Ar ages of lava flows from Anjar, Western Deccan Province, India and its relation to the Cretaceous–Tertiary boundary events. Curr Sci 70:990–996

    Google Scholar 

  • Yancey TE (1996) Stratigraphy and depositional environments of the Cretaceous–Tertiary boundary complex and basal section, Brazos River, Texas. Gulf Coast Assoc Geol Soc Trans 46:433–442

    Google Scholar 

  • Wang K, Attrep M Jr, Orth CJ (1993) Global iridium anomaly, mass extinction and redox change at the Devonian–Carboniferous boundary. Geology 21:1071–1074

    Google Scholar 

  • Ward W, Keller G, Stinnesbeck W, Adatte T (1995) Yucatan subsurface stratigraphy: implications and constraints for the Chicxulub impact. Geology 23:873–876

    Google Scholar 

  • Widdowson M, Pringle MS, Fernandez OA (2000) A post K–T boundary (Early Paleocene) age for Deccan-type feeder dykes, Goa, India. J Petrol 41:1177–1194

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Google Scholar 

Download references

Acknowledgments

The KT studies in Texas, Mexico, and throughout Central America that have led to the discovery of the complex history of the Chicxulub impact and the KT mass extinction are the result of long-term collaborations particularly with Thierry Adatte, Zsolt Berner, Doris Stueben, and Wolfgang Stinnesbeck along with many students. Thierry Adatte was also instrumental in Deccan studies along with Silvia Gardin, Annachiara Bartolini, and Sunil Bajpai. I’m grateful to all of them. I also thank Vincent Courtillot, Yves Gallet, and Frédéric Fluteau for many discussions during a sabbatical visit at the Institute de Physique du Globe de Paris. I’m grateful also to reviewers Karl Föllmi and William D. MacDonald for their comments to improve the manuscript. The material of this study is based upon work supported by the US National Science Foundation through the Continental Dynamics Program, Sedimentary Geology and Paleobiology Program, and Office of International Science and Engineering’s India Program under NSF Grants EAR-0207407 and EAR-0447171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerta Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Keller, G. (2012). The Cretaceous–Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_25

Download citation

Publish with us

Policies and ethics