Skip to main content

Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance

  • Chapter
  • First Online:
New Frontiers in Integrated Solid Earth Sciences

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.

Marco Bohnhoff now at Helmholt - Centre Potsdam GFZ (bohnhoff@gfz-potsdam.de)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki, K., Richards, P. (2002) Quantitative Seismology. 2nd Edition, University Science Books.

    Google Scholar 

  • Albright, J.N., Pearson, C.F. (1982) Acoustic Emissions as a Tool for Hydraulic Fracture Location: Experience at the Fenton Hill Hot Dry Rock Site. SPE J. 22, 4, 523–530.

    Google Scholar 

  • Ambraseys, N.N. (2002) The seismic activity of the Sea of Marmara region over the last 2000 years. Bull Seismol Soc Am. 92, 1–18.

    Article  Google Scholar 

  • Armijo, R., Meyer, B., Navarro, S., King, G., Barka, A. (2002) Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian fault? Terra Nova. 14, 2, 80–86.

    Article  Google Scholar 

  • Armijo, R. et al. (2005) Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian fault): Implications for seismic hazard in Istanbul. Geochem Geophysics Geosystems. doi:10.1029/2004GC000896.

    Google Scholar 

  • Baisch, S., Harjes, H.P. (2003) A model for fluid-injection-induced seismicity at the KTB, Germany. Geophys J Int. 152, 160–170.

    Article  Google Scholar 

  • Baisch, S., Bohnhoff, M., Ceranna, L., Tu, Y., Harjes, H.P. (2002) Probing the crust to 9 km depth: Fluid injection experiments and induced seismicity at the KTB superdeep drilling hole. Bull Seismol Soc Am. 92, 2369–2380.

    Article  Google Scholar 

  • Bakun, W.H., McEvilly, T.V. (1979) Earthquakes near Parkfield, California: Comparing the 1934 and 199 Sequences. Science. 205, 4413, 1375–1377.

    Article  Google Scholar 

  • Bakun, W.H., McEvilly, T.V. (1984) Recurrence models and Parkfield, California, earthquakes. J Geophys Res. 89, B5, 3051–3058.

    Article  Google Scholar 

  • Bakun, W.H., Lindh, A.G. (1985) The Parkfield, California, Earthquake Prediction Experiment. Science. 229, 4714, 619–624.

    Article  Google Scholar 

  • Bakun, W.H. et al. (1987) Parkfield earthquake prediction scenarios and response plans. USGS Open-File Report 87–192.

    Google Scholar 

  • Bakun, W.H. et al. (2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature. doi:10.1038/natures04067.

    Google Scholar 

  • Baris, S., Irmak, T.S., Grosser, H., Ozer, M.F., Woith, H., Ulutas, E., Tuncer, M.K. (2007) Monitoring seismicity in the eastern Marmara: the Armutlu Network. Geophys Res Abstr. 9, 10198.

    Google Scholar 

  • Barka, A. (1992) The North Anatolian fault zone. Annal Tectonicae. 6, 164–195.

    Google Scholar 

  • Barka, A. (1999) The 17 August Izmit earthquake. Science. 285, 1858–1859.

    Article  Google Scholar 

  • Barka, A. et al. (2002) The Surface Rupture and Slip Distribution of the 17 August 1999 Izmit Earthquake (M 7.4). Bull Seismol Soc Am. 92, 1, 43–60.

    Article  Google Scholar 

  • Barton, C.A., Zoback, M.D. (1994) Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. J Geophys Res. 99, 9373–9390.

    Article  Google Scholar 

  • Bindi, D., Parolai, S., Grosser, H., Milkereit, C., Durukal, E. (2007) Empirical ground-motion prediction equations for northwerstern Turkey using the aftershocks of the 1999 Kocaeli earthquake. Geophys Res Lett. 34, L08305.

    Article  Google Scholar 

  • Bird, J.F., Bommer, J.J. (2004) Earthquake Losses Due to Ground Failure. Eng Geol. doi:10.1016/j.enggeo.05.006.

    Google Scholar 

  • Bohnhoff, M., Baisch, S., Harjes, H.P. (2004) Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field. J Geophys Res. doi:10.1029/2003JB002528.

    Google Scholar 

  • Bohnhoff, M., Grosser, H., Dresen, G. (2006) Strain Partitioning and Stress Rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit Mw=7.4 Earthquake. Geophys J Int. 166, 373–385.

    Article  Google Scholar 

  • Bohnhoff, M., Bulut, F., Aktar, M., Childs, D.M., Dresen, G. (2007) The North Anatolian Fault Zone in the broader Istanbul/Marmara region: Monitoring a ,seimic gap‘. AGU Fall Meeting T51C-0688.

    Google Scholar 

  • Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., Baumgärtner, J. (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J Geophys Res. 102, B8, 18453–18475.

    Article  Google Scholar 

  • Chavarria, J.A., Malin, P., Catchings, R.D., Shalev, E. (2003) A Look Inside the San Andreas fault at Parkfield Through Vertical Seismic Profiling. Science. 302, 5651, 1746–1748.

    Article  Google Scholar 

  • Chavarria, J.A., Malin, P.E., Shaley, E. (2004) The SAFOD Pilot Hole seismic array: Wave propagation effects as a function of sensor depth and source location. Geophys Res Lett. doi:10.1029/2003GL019382.

    Google Scholar 

  • Davidson, J., Stanchits, S., Dresen, G. (2007) Scaling and Universality in Rock Fracture. Phys Rev Lett. doi: 10.1103/PhysRevLett.98.125502.

    Google Scholar 

  • Dresen, G., Duyster, J., Stoeckhert, B., Wirth, R., Zulauf, G. (1997) Quartz dislocation microstructure between 7000 m and 9100 m depth from the Continental Deep Drilling Program KTB. J. Geophys. Res. 102, B8, 18443–18452.

    Article  Google Scholar 

  • Dresen, G., Aktar, M., Bohnhoff, M., Eyidogan, H. (2007) Drilling the North Anatolian Fault. Sci Drill Spec Iss. doi:10.2204/iodp.sd.s01.17.2007.

    Google Scholar 

  • Eaton, J.P., O’Neill, M.E., Murdock, J.N. (1970) Aftershocks of the 1966 Parkfield-Cholame, California, earthquake: a detailed study. Bull Seismol Soc Am. 60, 1151–1197.

    Google Scholar 

  • Ellsworth, W.L., Hickman, S.H., Zoback, M.D., Imanishi, K., Thurber, C.H., Roecker, S.W. (2007a) Micro- Nano- and Picoearthquakes at SAFOD: Implications for Earthquake Rupture and Fault Mechanics. AGU S12B-05.

    Google Scholar 

  • Ellsworth, W.L., Malin, P.E., Imanishi, K., Roecker, S.W., Nadeau, R., Oye, V., Thurber, C.H., Waldhauser, F., Boness, N.L., Hickman, S.H., Zoback, M.D. (2007b) Seismology inside the Fault Zone: Applications to Fault-Zone Properties and Rupture Dynamics. Sci Drill Spec Iss. doi:10.2204/iodp.sd.s01.04.2007.

    Google Scholar 

  • Emmermann R. Lauterjung J. (Eds.) (1997) The German Continental Deep Drill Program KTB: Overview and major results. J Geophys Res 102(B8):18179–18201.

    Google Scholar 

  • Evans, D. (1966) Denver area earthquakes and the Rocky Mountain Arsenal disposal well. Mountain Geologist. 3, 1, 23–26.

    Google Scholar 

  • Flerit, F., Armijo, R., King, G., Meyer, B. (2004) The mechanical interaction between the propagating North Anatolian Fault and the back-arc extension in the Aegean. Earth Plant Sci Lett. 224, 347–362.

    Article  Google Scholar 

  • Fortin, J., Stanchits, S., Dresen, G., GuĂ©guen, Y. (2006) Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J Geophys Res. doi:10.1029/2005JB003854.

    Google Scholar 

  • Gibbs, J.F., Healy, J.H., Raleigh, C.B., Coakley, J.M. (1973) Seismicity in the Rangely, Colorado, area: 1962–1970. Bull Seismol Soc Am. 63, 1557–1570.

    Google Scholar 

  • Gutenberg, B. (1945) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seismol Soc Am. 35, 3–12.

    Google Scholar 

  • Gutenberg, B., Richter, C.F. (1941) Seismicity of the Earth. Geol Soc Am Spec Pap. 34, 1–133.

    Google Scholar 

  • Graham, C.C., Stanchits, S.,  Main, I.G., Dresen, G. (2009) Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data, Int. J. Rock Mech. Min. Sci. doi:10.1016/j.ijrmms.2009.05.002’.

    Google Scholar 

  • Harris, R.A., Arrowsmith, J.R. (2006) Introduction to the Special Issue on the 2004 Parkfield Earthquake and the Parkfield Earthquake Prediction Experiment. Bull Seismol Soc Am. doi:10.1785/0120050831.

    Google Scholar 

  • Healy, J.H., Rubey, W.W., Griggs, D.T., Raleigh, C.B. (1968) The Denver Earthquakes. Science. 161, 3848, 1301–1310.

    Article  Google Scholar 

  • Hickman, S.H., Zoback, M.D., Ellsworth, W.L. (2004) Introduction to special sections: Preparing for the San Andreas Fault Observatory at Depth. Geophys Res Lett. doi:10.1029/2004GL020688.

    Google Scholar 

  • Hickman, S.H., Zoback, M.D., Ellswoth, W.L., Boness, N., Malin, P., Roecker, S., Thurber, C. (2007) Structure and Properties of the San Andreas Fault in Central California: Recent Results from the SAFOD Experiment. Sci Drill. doi:10.2204/iodp.sd.s01.39.2007.

    Google Scholar 

  • Hill, D.P., Eaton, J.P., Jones, L.M. (1990) 5. Seismicity, 1980–86, in The San Andreas Fault System, California. Wallace RE (ed.) U.S. Geological Survey Professional Paper 1515, United States Government, Printing Office, Washington.

    Google Scholar 

  • Ide, S., Beroza, G.C. (2001) Does apparent stress vary with earthquake size, Geophys. Res. Lett. 28, 3349–3352.

    Article  Google Scholar 

  • Imamura, A., Kodaira, T., Imamura, H. (1932) The earthquake swarms of Nagusa and vicinity. Bull Earthquake Res Inst Univ Tokyo. 10, 636–648.

    Google Scholar 

  • Imanishi, K., Ellsworth, W.L. (2006) Scaling Relationships of Microearthquakes at Parkfield, CA, Determined Using the SAFOD Pilot Hole Seismic Array. Abercrombie RE McGarr A Di Toro G Kanamori H (eds.) Earthquakes: radiated energy and the physics of faulting, American Geophysical Union Monograph 170.

    Google Scholar 

  • Ishimoto, M., Ida, K. (1939) Observations sur les seismes enrigstres par le microsismographe construit dernierement (I). Bull Earthquake Inst Univ Tokyo 17:443–478 (in Japanese with French abstract).

    Google Scholar 

  • Ito, H. (2007) Long-term monitoring in deep boreholes in the Nankai subduction zone. Sci Drill Spec Iss. 1, 117–119.

    Google Scholar 

  • Janssen, C., Wagner, C., Zang, A., Dresen, G. (2001) Fracture Process Zone in Granite-a Microstructural Analysis. Int J Earth Sci. 90, 46–59.

    Article  Google Scholar 

  • Jones, R.H., Stewart, R.C. (1997) A method for determining significant structures in a cloud of earthquakes. J Geophys Res. 102, B4, 8245–8254.

    Article  Google Scholar 

  • Jost, M.L., BĂ¼sselberg, T., Jost, Ă–., Harjes, H.P. (1998) Source parameters of injection-induced microearthquakes at 9 km depth at the KTB Deep Drilling site, Germany. Bull Seismol Soc Am. 88, 815–832.

    Google Scholar 

  • Karabulut, H., Bouin, M.P., Bouchon, M., Dietrich, M., Cornou, C., Aktar, M. (2002) The Seismicity in the Eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bull Seismol Soc Am. 92, 1, 387–393.

    Article  Google Scholar 

  • Kikuchi, M., Nakamura, M., Yoshikawa, K. (2003) Fault asperity of large earthquakes in Japan inferred from low-gain historical seismograms. Earth Plan Space. 55, 159–172.

    Google Scholar 

  • Korneev, V.A., McEvilly, T.V., Karageorgi, E.D. (2000) Seismological Studies at Parkfield VIII: Modeling the Observed Travel-Time Changes. Bull Seismol Soc Am. 90, 702–708.

    Article  Google Scholar 

  • Kostrov, B.V. Selfsimilar problems of propagation of shear cracks (Tengential rupture crack propagation in medium under shearing stress). PPM-J Appl Meth Mech. 28, 5, 1077–1087. (1964).

    Article  Google Scholar 

  • Kovach, R.L. (1974) Source mechanisms for Wilmington oil field, California, subsidence earthquakes. Bull Seismol Soc Am. 64, 699–711.

    Google Scholar 

  • Lee WHK Stewart SW (1981) Principles and Applications of Microearthquake Networks. Academic Press, New York.

    Google Scholar 

  • Lei, X., Nishizawa, O., Kusunose, K., Satoh, T. (1992) Fractal Structure of the Hypocenter Distributions and Focal Mechanism Solutions of Acoustic Emission in Two Granites of Different Grain Sizes. J Phys Earth. 40, 617–634.

    Google Scholar 

  • Lei, X., Kusunose, K., Rao, M.V.M.S., Nishizawa, O., Satoh, T. (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res 105. 6127–6139.

    Google Scholar 

  • LePichon, X. et al. (2001) The active Main Marmara Fault. Earth Plant Sci Lett. 192, 595–616.

    Article  Google Scholar 

  • Lisowski, M., Prescott, W.H. (1981) Short-range distance measurements along the San Andreas fault system in central California, 1975 to 1979. Bull Seismol Soc Am. 71, 1607–1624.

    Google Scholar 

  • Lockner, D.A. (1993) The Role of Acoustic Emission in the Study of Rock Fracture. Int J Rock Mech Min Sci Geomech. 30, 7, 883–899.

    Article  Google Scholar 

  • Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., Sidorin, A. (1991) Quasi-static fault growth and shear fracture energy in granite. Nature. 350, 6313, 39–42.

    Article  Google Scholar 

  • Lockner, D.A., Byerlee, J.D. (1991) Precursory AE patterns leading to rock fracture. 5th Conf Acoust Emiss Geol Struct Mat 45–58 Trans Tech Publications Clausthal-Zellerfeld-Germany and Pennsylvania State University.

    Google Scholar 

  • Lockner, D.A., Byerlee, J.D. (1992) Fault growth and acoustic emissions in confined granite. Proceedings of the 22nd Midwestern Mechanics Conf 165–173 Appl Mech Rev Rolla Missouri.

    Google Scholar 

  • Malin, P.E., Blakeslee, S.N., Alvarez, M.G., Martin, A.J. (1989) Microearthquake Imaging of the Parkfield Asperity. Science. 244, 4904, 557–559.

    Article  Google Scholar 

  • McGarr, A. (1991) On a possible connection between three major earthquakes in California and oil production. Bull Seismol Soc Am. 81, 948–970.

    Google Scholar 

  • McGarr, A., Simpson, D., Seeber, L. (2002) Case Histories of Induced and Triggered Seismicity. In: International handbook of earthquake and engineering seismology Part A (International geophysics, Vol.81 A), p 647–661.

    Google Scholar 

  • Muller, J.R., Aydin, A. (2005) Using mechanical modelling to constrain fault geometries proposed for the northern Marmara sea. J Geophys Res. doi:10.1029/2004JB003226.

    Google Scholar 

  • Murray, J., Langbein, J. (2006) Slip on the San Andreas Fault at Parkfield, California, over Two Earthquake Cycles, and the Implications for Seismic Hazard. Bull Seismol Soc Am. 96, S283–S303.

    Article  Google Scholar 

  • Nadeau, R.M., Dolenc, D. (2005) Nonvolcanic tremor Deep Beneath the San Andreas Fault. Science. 307, 5708, 389.

    Article  Google Scholar 

  • Nadeau, R.M., Foxall, W., McEvilly, T.V. (1995) Clustering and periodic recurrence of microearthquakes on the San Andreas fault at Parkfield, California. Science. 267, 503–507.

    Article  Google Scholar 

  • Namba, Y., Ito, H., Kato, K., Higuchi, K., Kyo, M. (2008) Engineering specifications on LTBMS telemetry system for NanTroSEIZE 3.5 km riser hole. JAMSTEC Rep Res Dev. 7, 43–58.

    Google Scholar 

  • Oppenheimer, D.H., Iyer, H.M. (1980) Frequency-wavenumber analysis of geothermal microseisms at Norris Geyser basin, Yellowstone National Park, Wyoming. Geophysics. 45, doi:10.1190/1.1441099.

    Google Scholar 

  • Ă–zalaybey, S., Ergin, M., Aktar, M., Tapirdamaz, C., Bicmen, F., YörĂ¼k, A. (2002) The 1999 Izmit Earthquake Sequence in Turkey: Seismological and Tectonic Aspects. Bull Seismol Soc Am. 92, 1, 376–386.

    Article  Google Scholar 

  • Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P.R., Kaneda, Y. (2002) Splay fault branching along the Nankai subduction zone, Science 297, 1157–1160.

    Article  Google Scholar 

  • Parolai, S., Richwalski, S.M., Zschau, J., Durukal, E., Ă–zel, O., Birgören, G., Ansal, A., Erdik, M. (2007) Project ‘Megacity Istanbul’: Estimation of site effects and ground motion scenarios. Geophys Res. Abstr 8 07038.

    Google Scholar 

  • Parsons, T. (2004) Recalculated probability of M≥7 earthquakes beneath the Sea of Marmara, Turkey. J Geophys Res. doi:10.1029/2003JB002667.

    Google Scholar 

  • Phillips, W.S., Fairbanks, T.D., Rutledge, J.T., Anderson, D.W. (1998) Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk. Tectonophysics. doi:10.1016/S0040-1951(97)00313-2.

    Google Scholar 

  • Phillips, W.S., Rutledge, J.T., House, L.S., Fehler, M.M.C. (2002) Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: Six Case Studies. PAGEOPH. 159, 345–369.

    Article  Google Scholar 

  • Plenkers, K., Kwiatek, G. JAGUARS-group (2008) JAGUARS-Project: Spectral analysis of microseismicity and acoustic emission in a deep South African gold mine. Seismol Res Lett. 79, 330.

    Google Scholar 

  • Raleigh, C.B., Healy, J.H., Bredehoeft, J.D. (1972) Faulting and crustal stress at Rangely, Colorado. Flow and Fracture of rocks. Am Geophys Union Geophys Monograph. 16, 275–284.

    Google Scholar 

  • Reid, H.F. (1910) The mechanics of the earthquake. Carnegie Institution of Washington.

    Google Scholar 

  • Reilinger, R. et al. (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications fort he dynamics of plate interactions. J Geophys Res. doi:10.1029/2005JB004051.

    Google Scholar 

  • Richter, C.F. (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am. 25, 1–32.

    Google Scholar 

  • Roecker, S., Thurber, C., McPhee, D. (2004) Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site. Geophys Res Lett. doi:10.1029/2003GL019396.

    Google Scholar 

  • Rubin, A.M., Gillard, D., Got, J.L. (1999) Streaks of microearthquakes along creeping faults. Nature.doi:10.1038/23196.

    Google Scholar 

  • Rutledge, J.T., Phillips, W.S., Roff, A., Albright, J.N., Hamilton-Smith, T., Jones, S., Kimmich, K. (1994) Subsurface fracture mapping using microearthquakes detected during primary oil production, Clinton County, Kentucky, paper SPE 28384, Soc. of Petro. Eng. Ann. Tech. Conf.

    Google Scholar 

  • Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., (2004) Faulting Induced by Forced Fluid Injection and Fluid Flow Forced by Faulting: An Interpretation of Hydraulic-Fracture Microseismicity, Carthage Cotton Valley Gas Field, Texas. Bull Seismol Soc Am doi:10.1785/012003257.

    Google Scholar 

  • Sato, T., Kasahara, J., Taymaz, T., Ito, M., Kamimura, A., Hayakawa, T., Tan, O. (2004) A study of microearthquake seismicity and focal mechanisms within the Sea of Marmara (NW Turkey) using ocean bottom seismometers (OBSs. Tectonophysic. 391, 303–314.

    Article  Google Scholar 

  • Schaff, D.P., Bokelmann, G.H.R., Beroza, G.C. (2002) High-resolution image of Calaveras Fault seismicity. J Geophys Res. doi:10.1029/2001JB000633.

    Google Scholar 

  • Schaff, D.P., Bokelmann, G.H.R., Ellsworth, W.L., Zanzerkia, E., Waldhauser, F., Beroza, G.C. (2004) Optimizing Correlation Techniques for Improved Earthquake Location. Bull Seosmol Soc Am. doi:10.1785/0120020238.

    Google Scholar 

  • Scholz, C.H. (1968) The Frequency – Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes. Bull Seismol Soc Am. 58, 1, 399–415.

    Google Scholar 

  • Simpson, R.W., Barall, M., Langbein, J., Murray, J.R., Rymer, M.J. (2006) San Andreas Fault Geometry in the Parkfield, California. Region Bull Seismol Soc Am. doi:10.1785/0120050824.

    Google Scholar 

  • Stanchits, S., Vinciguerra, S., Dresen, G. (2006) Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. PAGEOPH. 163, 974–993.

    Article  Google Scholar 

  • Stanchits, S., Dresen, G. (2003) Separation of Tensile and Shear Cracks Based on Acoustic Emission Analysis of Rock Fracture. Proc Int Symposium: Non-Destructive Testing in Civil Engineering (NDT-CE) Berlin 107.

    Google Scholar 

  • Stein, R.S., Barka, A., Dieterich, J.H. (1997) Progressive failure ob the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int. 128, 594–604.

    Article  Google Scholar 

  • Thurber, C., Roecker, S., Zhang, H., Baher, S., Ellsworth, W.L. (2004) Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophys Res Lett. doi:10.1029/2003GL019398.

    Google Scholar 

  • Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., Eberhart-Phillips, D. (2006) Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bull. Seismol. Soc. Am. doi:10.1785/0120050825.

    Google Scholar 

  • Tobin, H., Kinoshita, M. (2006) The IODP Nankai Trough seismogenic zone experiment. Sci Drill. doi:10.2204/iodp.sd.2.06.2006.

    Google Scholar 

  • Waldhauser, F., Ellsworth, W.L., Cole A. (1999) Slip-parallel seismic lineations on the Northern Hayward Fault, California. Geophys. Res. Lett. 26, 3525–3528.

    Article  Google Scholar 

  • Waldhauser, F., Ellsworth, W.L. (2000) A Double-Difference Earthquake Location Algorithm: Method and Applications to the Northern Hayward Fault, California. Bull Seismol Soc Am. doi:10.1785/0120000006.

    Google Scholar 

  • Waldhauser, F., Ellsworth, W.L. (2002) Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. J Geophys Res. doi: 10.1029/2000JB000084.

    Google Scholar 

  • Waldhauser, F., Ellsworth, W.L., Schaff, D.P., Cole, A. (2004) Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophys Res Lett. doi:10.1020/2004GL020649.

    Google Scholar 

  • Yalciner, A.C., Alpar, B., Altinok, Y., Ă–zbay, I., Imamura, F. (2002) Tsunamis in the Sea of Marmara: Historical documents for the past, models for the future. Mar Geol. 190, 445–463.

    Article  Google Scholar 

  • Young, R.P., Collins, D.S. (2001) Seismic studies of rock fracture at the Underground Research Laboratory, Canada. Int J Rock Mech Mining Sc. 38, 787–799.

    Article  Google Scholar 

  • Zang, A., Wagner, F.C., Stanchits, S., Janssen, C., Dresen, G. (2000) Fracture process zone in granite. J Geophys Res. 105, 23651–23661.

    Article  Google Scholar 

  • Zang, A., Wagner, F.C., Stanchits, S., Dresen, G., Andresen, R., Haidekker, M.A. (1998) Source analysis of acoustic emissions in granite cores under symmetric and asymmetric compressive load. Geophys J Int. 135, 1113–1130.

    Article  Google Scholar 

  • Zang, A., Wagner, F.C., Dresen, G. (1996) Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophys Res. 101, 17507–17521.

    Article  Google Scholar 

  • Zhang, H., Thurber, C.H. (2003) Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California. Bull Seismol Soc Am. doi:10.1785/ 0120020190.

    Google Scholar 

  • Zoback , M.D., Harjes , H.P. (1997) Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J Geophys Res. 102, B8, 18477–18491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bohnhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bohnhoff, M., Dresen, G., Ellsworth, W.L., Ito, H. (2009). Passive Seismic Monitoring of Natural and Induced Earthquakes: Case Studies, Future Directions and Socio-Economic Relevance. In: Cloetingh, S., Negendank, J. (eds) New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2737-5_7

Download citation

Publish with us

Policies and ethics