Skip to main content

7.5 Abundant Marine Calcium Sulphates: Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle

  • Chapter
  • First Online:
Reading the Archive of Earth’s Oxygenation

Abstract

The modern (pre-industrial) ocean is characterised by a concentration of dissolved sulphate of 28 mM with little variability in its horizontal or vertical distribution. This homogeneity is a consequence of the long residence time of sulphate of some 25 Ma in comparison to the present ocean mixing time of 1,000–2,000 years (e.g. Holland 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71:4868–4879

    Article  Google Scholar 

  • Bekker A, Eriksson KA (2003) Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland Breakup. Precambrian Res 120:327–364

    Article  Google Scholar 

  • Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003) Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325

    Article  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  Google Scholar 

  • Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America. Precambrian Res 148:145–180

    Article  Google Scholar 

  • Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulphate reducing bacteria. Geochim Cosmochim Acta 69:4759–4771

    Article  Google Scholar 

  • Buick R, Dunlop JSR (1990) Evaporitic sediments of early Archean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37:247–277

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1985) Kinetic and thermodynamic factors controlling the distribution of SO 2−4 and Na+ in calcites and selected aragonites. Geochim Cosmochim Acta 49:713–725

    Article  Google Scholar 

  • Cameron EM (1983) Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans. Nature 304:54–56

    Article  Google Scholar 

  • Cameron EM, Hall GEM, Veizer J, Krouse HR (1995) Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Columbia, Canada. Chem Geol 122:149–169

    Article  Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulphur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in mineralogy and geochemistry, vol. 53. Geological Society of America, Washington, DC, pp 607–633

    Google Scholar 

  • Canfield DE (2004) The evolution of the Earth surface sulfur reservoir. Am J Sci 304:839–861

    Article  Google Scholar 

  • Canfield DE, Farquhar J, Zerkle AL (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–418

    Article  Google Scholar 

  • Chandler FW (1988) Diagenesis of sabkha-related, sulphate nodules in the Early Proterozoic Gordon Lake Formation, Ontario, Canada. Carbon Evapor 3:75–94

    Article  Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:190–260

    Article  Google Scholar 

  • Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. Society of Sedimentary Geologists, Tulsa, p 265

    Google Scholar 

  • Detmers J, Brüchert V, Habicht KS, Küver J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Environ Microbiol 67:888–894

    Article  Google Scholar 

  • Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulphur isotopes in the Mid-Archean Era. Earth Planet Sci Lett 269:29–40

    Article  Google Scholar 

  • El Tabakh M, Grey C, Pirajno F, Schreiber BC (1999) Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: origin and significance. Geology 27:871–874

    Article  Google Scholar 

  • Evans DAD (2006) Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444:51–55

    Article  Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2008) The ancient anoxic biosphere was not as we know it. In: Dobretsov N, Kolchanov N, Rozanov A, Zavarzin G (eds) Biosphere origin and evolution. Springer, New York, pp 169–188

    Chapter  Google Scholar 

  • Fallick AE, Melezhik VA, Simonson B (2011) On Proterozoic ecosystems and the carbon isotopic composition of carbonates associated with banded iron formations. In: Neves L et al (eds) Modelacao de Sistemas. Geologicos, Universidade de Coimbra, Portugal, pp 57–71

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulphur cycle. Science 289:756–758

    Article  Google Scholar 

  • Garrels RM, Lerman A (1984) Coupling of the sedimentary sulfur and carbon cycles – an improved model. Am J Sci 284:989–1007

    Article  Google Scholar 

  • Gee RD, Grey K (1993) Proterozoic rocks on the Glengarry 1:250,000 sheet: stratigraphy, structure and stromatolite biostratigraphy. Geol Surv West Aust Rep 41:30

    Google Scholar 

  • Goddéris Y, Veizer J (2000) Tectonic control of chemical and isotopic composition of ancient oceans: the impact of continental growth. Am J Sci 300:434–461

    Article  Google Scholar 

  • Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell P, Martin A (2001) Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million year old rocks of the Belingwe belt, Zimbabwe. Proc R Soc Lond B268:113–119

    Article  Google Scholar 

  • Grossman EL, Mii H-S, Zhang C, Yancey TE (1996) Chemical variation in Pennsylvanian brachiopod shells – diagenetic, taxonomic, microstructural, and seasonal effects. J Sed Res 66:1011–1022

    Google Scholar 

  • Guliy VN, Wada H (2003) Macro and microvariations of isotopic composition of carbon and oxygen of carbonates from the Precambrian of the Aldan Shield. Geochemistry 5:482–491 (in Russian)

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Article  Google Scholar 

  • Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374

    Article  Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283

    Article  Google Scholar 

  • Hardie LA, Shinn EA (1986) Carbonate depositional environments modern and ancient, part 3: tidal flats. Colo Sch Mines Q 81:1–74

    Google Scholar 

  • Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr Palaeoclimatol Palaeoecol 240:3–46

    Article  Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. R Soc Lond Philos Trans B Biol Sci B 361:931–950

    Article  Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–134

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans, Princeton series in geochemistry. Princeton University Press, Princeton, p 582

    Google Scholar 

  • Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci B361:903–915

    Google Scholar 

  • Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochim Cosmochim Acta 66:3733–3756

    Article  Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838

    Article  Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulphur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulphate in carbonates. Chem Geol 204:255–286

    Article  Google Scholar 

  • Kendall AC (1984) Evaporites. In: Walker RG (ed) Facies models, vol 1, 2nd edn, Geoscience Canada reprint series. Geological Association of Canada, Toronto, pp 259–296

    Google Scholar 

  • Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011a) Section of the Onega structure based on data from OPH (Onega parametric hole). In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (geology, tectonics, deep structure and minerageny). Karelian Science Centre, Petrozavodsk, pp 172–189 (in Russian)

    Google Scholar 

  • Krupenik VA, Akhmedov AM, Sveshnikova KYu (2011b) Carbon, oxygen and sulphur isotopic composition of rocks from Ludicovian and Jatulian Super-Horizons. In: Glushanin LV, Sharov NV, Shchiptsov VV (eds) The Onega Palaeoproterozoic structure (geology, tectonics, deep structure and minerageny). Karelian Science Centre, Petrozavodsk, pp 250–255 (in Russian)

    Google Scholar 

  • Kump LR (1989) Alternative modeling approaches to the geochemical cycles of carbon, sulfur and strontium isotopes. Am J Sci 289:390–410

    Article  Google Scholar 

  • Lambert IB, Donnelly TH, Dunlop JSR, Groves DI (1978) Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276:808–810

    Article  Google Scholar 

  • Lindsay JF, Brasier MD (2002) Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of western Australian basins. Precambrian Res 114:1–34

    Article  Google Scholar 

  • Lyons TW, Gill BC (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99

    Article  Google Scholar 

  • Master S, Bekker A, Hofmann A (2010) A review of the stratigraphy and geological setting of the Palaeoproterozoic Magondi Supergroup, Zimbabwe – type locality for the Lomagundi carbon isotope excursion. Precambrian Res 182:254–273

    Article  Google Scholar 

  • Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmosheric oxygen and local amplification of the δ13C excursion. Terra Nova 17:141–148

    Article  Google Scholar 

  • Melezhik VA, Fallick AE, Rychanchik DV, FAR-DEEP Drilling Team (2011) Abundant marine sulphate in the Palaeoproterozoic: models come and go, but the rock record endures. In: Goldschmidt conference, Prague, 14–19 Aug 2011

    Google Scholar 

  • Morozov AF, Hahaev BN, Petrov OV, Gorbachev VI, Tarkhanov GB, Tsvetkov LD, Erinchek YuM, Akhmedov AM, Krupenik VA, Sveshnikova KYu (2010) Rock-salts in Palaeoproterozoic strata of the Onega depression of Karelia (based on data from the Onega parametric drillhole). Commun Acad Sci 435(2):230–233 (in Russian)

    Google Scholar 

  • Ohmoto H (1999) When did the Earth’s atmosphere become oxic? Geochem News 93:12–27

    Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulphur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  Google Scholar 

  • Pavlov AA, Kasting J (2002) Mass-independent fractionation of sulphur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41

    Article  Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotope composition of Cenozoic seawater sulfate. Science 282:1459–1462

    Article  Google Scholar 

  • Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30:747–750

    Article  Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (2004) Seawater sulfur isotope fluctuations in the Cretaceous. Science 304:1663–1665

    Article  Google Scholar 

  • Philippot P, van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  Google Scholar 

  • Pirajno F, Occhipinti SA, Swager CP (1998) Geology and tectonic evolution of Palaeoproterozoic Bryah, Padbury and Yerrida (formerly Glengarry Basin), Western Australia: implications for the history of the south-central Capricorn Orogen. Precambrian Res 90:119–140

    Article  Google Scholar 

  • Pirajno F, Jones JA, Hocking RM, Halilovic J (2004) Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia. Precambrian Res 128:315–342

    Article  Google Scholar 

  • Pope MC, Grotzinger JP (2003) Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada; record of cratonic-scale salinity crisis. J Sed Res 73:280–295

    Article  Google Scholar 

  • Prokoph A, Shields GA, Veizer J (2008) Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci Rev 87:113–133

    Article  Google Scholar 

  • Reuschel M, Melezhik VA, Lepland A, Fallick AE, Strauss H (2012) Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga. Precambrian Res 192:78–88

    Article  Google Scholar 

  • Russell J (1992) Investigation of the potential of Pb-Pb radiometric dating for the direct age determination of carbonates. Ph.D. thesis, University of Oxford

    Google Scholar 

  • Schreiber BC, Babel M, Lugli S (2007) Introduction and overview. In: Schreiber BC, Lugli S, Babel M (eds) Evaporites through space and time, vol 285, Geological Society Special Publications. Geological Society, London, pp 1–13

    Google Scholar 

  • Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS (2008) Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the 2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–117

    Article  Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81

    Article  Google Scholar 

  • Shen Y, Farquhar J, Masterson A, Kaufman AJ, Buick R (2009) Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet Sci Lett 279:383–391

    Article  Google Scholar 

  • Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77

    Article  Google Scholar 

  • Simon L, Goddéris Y, Buggisch W, Strauss H, Joachimski MM (2007) Modeling the carbon and sulfur isotope compositions of marine sediments: climate evolution during the Devonian. Chem Geol 246:19–38

    Article  Google Scholar 

  • Staudt WJ, Schoonen MAA (1995) Sulfate incorporation into sedimentary carbonates. In: Vairavamurthy MA, Schoonen MAA (eds) Geochemical transformations of sedimentary sulfur. American Chemical Society, Washington, pp 332–345

    Chapter  Google Scholar 

  • Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimatol Palaeoecol 132:97–118

    Article  Google Scholar 

  • Strauss H (2002) The sulfur isotopic composition of Precambrian sedimentary sulfides – seawater chemistry and biological evolution. In: Altermann W, Corcoran P (eds) Precambrian sedimentary environments: a modern approach to ancient depositional systems, Special publications of the international association of sedimentologists, vol 33. Blackwell Science, Oxford, pp 67–105

    Google Scholar 

  • Strauss H (2003) The early Archean sulfur cycle as evident from sulfur isotopes. Precambrian Res 126:349–361

    Article  Google Scholar 

  • Thomazo C, Pinti D, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678

    Article  Google Scholar 

  • Ueno Y, Ono S, Rumble D, Maruyamas S (2008) Quadruple sulfur isotope analysis of c. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691

    Article  Google Scholar 

  • Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajnoa F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    Article  Google Scholar 

  • Velikoslavinsky SD, Kotov AB, Sal’nikova EB, Glebovitsky VA, Kovach VP, Zagarnaya NY, Belyaevsky NA, Yakovleva SZ, Fedoseenko AM (2003) The U–Pb age of the Fedorov sequence of the Aldan granulite–gneiss megacomplex, the Aldan Shield. Commun Russ Acad Earth Sci 393:1151–1155 (in Russian)

    Google Scholar 

  • Vinogradov VI, Reimer TO, Leites AM, Smelov SB (1976) The oldest sulfates in the Archean Formations of the South African and the Aldan Shields, and the evolution of the Earth’s oxygen atmosphere. Lithol Miner Resour 11:407–420 (in Russian)

    Google Scholar 

  • Warren JK (1989) Evaporite sedimentology. Prentice Hall Inc, Englewood Cliffs, p 285

    Google Scholar 

  • Warren J (1999) Evaporites: their evolution and economics. Oxford University Press, Oxford, p 438

    Google Scholar 

  • Werne JP, Hollander DJ, Lyons TW, Sinninghe Damsté JS (2003) Organic sulphur biogeochemistry: recent advances and future research directions. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry: past and present, Geol Soc Am Spec Pap 379: 135–150, Geological Society of America, Boulder

    Chapter  Google Scholar 

  • Woodhead JD, Hergt JM (1997) Application of the ‘double spike’ technique to Pb-isotope geochronology. Chem Geol 138:311–321

    Article  Google Scholar 

  • Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Article  Google Scholar 

  • Zharkov MA (1984) Paleozoic salt bearing formations of the world. Springer, Berlin, p 395

    Book  Google Scholar 

  • Ziegler PA (1990) Geological atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum Mij, B.V., The Hague

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strauss, H., Melezhik, V.A., Reuschel, M., Fallick, A.E., Lepland, A., Rychanchik, D.V. (2013). 7.5 Abundant Marine Calcium Sulphates: Radical Change of Seawater Sulphate Reservoir and Sulphur Cycle. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_5

Download citation

Publish with us

Policies and ethics