Skip to main content

7.4 An Apparent Oxidation of the Upper Mantle versus Regional Deep Oxidation of Terrestrial Surfaces in the Fennoscandian Shield

  • Chapter
  • First Online:
  • 2067 Accesses

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Part of the Palaeoproterozoic Karelian igneous and sedimentary rocks of the Fennoscandian Shield were erupted and deposited during the “Great Oxidation Event” (GOE). The drillcores collected for the Fennoscandia Arctic Russia – Drilling Early Earth Project (FAR-DEEP) allow detailed geological and geochemical sampling through this very dynamic time in geologic history. One of the unusual characteristics of the Palaeoproterozoic volcanic rocks in the eastern part of the Fennoscandian Shield is the presence of highly oxidised lava flows (Fig. 7.45), suggestive of a link to the GOE, either cause or effect. The most oxidised volcanic rocks are found in the Jatulian system deposited within the time interval of 2.3–2.06 Ga (see Fig. 7.46). The age and sampling structure of the FAR-DEEP cores permit the testing and assessment of two competing hypotheses for the origin of the highly oxidised volcanic rocks of the Fennoscandian Shield: an apparent increase in the oxidation state of the upper mantle from which the lavas were erupted, or subsequent deep oxidative weathering of the lavas as a result of the GOE, or the combined effect of both. The rocks sampled by the FAR-DEEP cores allow the comparison of primary and secondary mineralogical and diagenetic details, which may not be present in outcrop. In addition to investigating the origin of the highly oxidised rocks, other questions can be addressed because of the exquisite preservation of the rocks sampled in the FAR-DEEP cores. Specifically, are there discernable physical and/or chemical differences in weathering profiles developed on lava flows before and after the GOE, and can palaeo-water tables in the shield be identified through the use of redox proxies? The FAR-DEEP cores also sample igneous rocks erupted during the proposed magmatic activity shutdown/slowdown between 2.45 and 2.2 Ga (Condie et al. 2009). Overall, the FAR-DEEP cores are conducive to detailed geochemical analysis and potential insight into a poorly understood interval in Earth’s history.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarede F, van der Hilst RD (1999) New mantle convection model may reconcile conflicting evidence. EOS Trans Am Geophys Union 80:535–539

    Article  Google Scholar 

  • Amelin YuV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Palaeoproterozoic continental rifting. Precambrian Res 75:31–46

    Article  Google Scholar 

  • Annells R (1972) Proterozoic flood basalts of eastern Lake Superior: the Keweenawan volcanic rocks of the Mamainse Point area, Ontario. Department of Energy, Mines and Resources, Ottawa, p 51

    Google Scholar 

  • Battistuzzi F, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44

    Article  Google Scholar 

  • Bekker A, Holland H, Wang P, Rumble D, Stein H, Hannah J, Coetzee L, Beukes N (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  Google Scholar 

  • Berry AJ, Danyushevsky LV, O’Neill HSC, Newville M, Sutton SR (2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455:960–963

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/∑Fe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69:711–725

    Article  Google Scholar 

  • Brantley SL, White AF (2009) Approaches to modeling weathered regolith. Rev Mineral Geochem 70:435–484

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate deficient Archaean Lakes. Science 255:74–77

    Article  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc B Bio Sci 363:2731–2743

    Article  Google Scholar 

  • Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197

    Article  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90

    Article  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    Article  Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411

    Article  Google Scholar 

  • Collerson KD, Kamber BS (1999) Evolution of the continents and atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283:1519–1522

    Article  Google Scholar 

  • Condie KC, O’Neill C, Aster RC (2009) Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet Sci Lett 282:294–298

    Article  Google Scholar 

  • Cornwall HR (1951) Ilmenite, magnetite, hematite, and copper in lavas of the Keweenawan series [Michigan]. Econ Geol 46:51–67

    Article  Google Scholar 

  • Cortés JÍNA, Wilson M, Condliffe E, Francalanci L (2006) The occurrence of forsterite and highly oxidizing conditions in basaltic lavas from Stromboli volcano, Italy. J Petrol 47:1345–1373

    Article  Google Scholar 

  • Delano JW (2001) Redox history of Earth’s interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341

    Article  Google Scholar 

  • Driese SG (2004) Pedogenic translocation of Fe in modern and ancient Vertisols and implications for interpretations of the Hekpoort paleosol (2.25 Ga). J Geol 112:543–560

    Article  Google Scholar 

  • Evans D, Beukes N, Kirschvink J (1997) Low-latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2010) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36

    Article  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232

    Article  Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schroder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim ST, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Article  Google Scholar 

  • Hannah JL, Stein HJ, Zimmerman A, Yang G, Markey RJ, Melezhik VA (2006) Precise 2004 ± 9 Ma Re‐Os age for Pechenga black shale: comparison of sulfides and organic material. Geochim Cosmochim Acta 70:A228

    Google Scholar 

  • Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic, Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Geol Survey Finland Bull 367:192

    Google Scholar 

  • Hanski EJ, Smolkin VF (1989) Pechenga ferropicrites and other early Proterozoic picrites in the eastern part of the Baltic Shield. Precambrian Res 45:63–82

    Article  Google Scholar 

  • Hirschmann M (2009) Ironing out the oxidation of Earth’s mantle. Science 325:545–546

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 587

    Google Scholar 

  • Holland HD (2009) Why the atmosphere became oxygenated: a proposal. Geochim Cosmochim Acta 73:5241–5255

    Article  Google Scholar 

  • Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A Mossbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597–1609

    Google Scholar 

  • Kasting JF (2006) Ups and downs of ancient oxygen. Nature 443:643–645

    Article  Google Scholar 

  • Kasting JF (2008) The primitive earth. In: Wong JT-F, Lazcano A (eds) Prebiotic evolution and astrobiology. Landes Biosciences, Austin, pp 1–8

    Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Article  Google Scholar 

  • Kato Y, Suzuki K, Nakamura K, Hickman AH, Nedachi M, Kusakabe M, Bevacqua DC, Ohmoto H (2009) Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth Planet Sci Lett 278:40–49

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Article  Google Scholar 

  • Kellogg LH, Hager BH, Van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136

    Article  Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    Article  Google Scholar 

  • Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036

    Article  Google Scholar 

  • Kump LR, Kasting JF, Barley ME (2001) Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem Geophys Geosyst 2: Paper No. 2000GC0114, p 10

    Google Scholar 

  • Lange RA, Carmichael ISE (1990) Hydrous basaltic andesites associated with minette and related lavas in western Mexico. J Petrol 31:1225–1259

    Google Scholar 

  • Lee CTA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336

    Article  Google Scholar 

  • Lee CTA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochim Cosmochim Acta 67:3045–3064

    Article  Google Scholar 

  • Li ZXA, Lee CTA (2004) The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett 228:483–493

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50:1765–1794

    Article  Google Scholar 

  • Martin AP, Condon DJ, Prave AR, Melezhik VA, Fallick A (2010) Constraining the termination of the Lomagundi-Jatuli positive isotope excursion in the Imandra-Varzuga segment (Kola Peninsula, Russia) of the North Transfennoscandian Greenstone Belt by high-precision ID-TIMS, AGU, San Francisco, 13–17 Dec 2010

    Google Scholar 

  • Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658

    Article  Google Scholar 

  • Murakami T, Sreenivas B, Sharma SD, Sugimori H (2011) Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochim Cosmochim Acta 75:3982–4004

    Article  Google Scholar 

  • Oppenheimer C, Moretti R, Kyle PR, Eschenbacher A, Lowenstern JB, Hervig RL, Dunbar NW (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306:261–271

    Article  Google Scholar 

  • Öskarsson N, Helgason Ö, Steinthorsson S (1994) Oxidation state of iron in mantle-derived magmas of the Icelandic rift zone. Hyperfine Interact 91:733–737

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  Google Scholar 

  • Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J Petrol 50:61–91

    Article  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  Google Scholar 

  • Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B Biol Sci 361:951–968

    Article  Google Scholar 

  • Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem 30:1–66

    Google Scholar 

  • Van der Hilst RD, Karason H (1999) Compositional heterogeneity in the botton 1000 kilometers of Earth’s mantle: toward a hybrid convection model. Science 283:1885–1888

    Article  Google Scholar 

  • Watanabe Y, Farquhar J, Ohmoto H (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle S. Rybacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rybacki, K.S., Kump, L.R., Hanski, E.J., Melezhik, V.A. (2013). 7.4 An Apparent Oxidation of the Upper Mantle versus Regional Deep Oxidation of Terrestrial Surfaces in the Fennoscandian Shield. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_4

Download citation

Publish with us

Policies and ethics