Skip to main content

7.10 Chemical Characteristics of Sediments and Seawater

  • Chapter
  • First Online:
Reading the Archive of Earth’s Oxygenation

Abstract

The transition from an anoxic to oxygenated atmosphere was arguably the most dramatic change in the history of the Earth. This “Great Oxidation Event” (Holland 2006) transformed the biogeochemical cycles of the elements by imposing an oxidative step in the cycles, creating strong redox gradients in the terrestrial and marine realms that energised microbial metabolism. Although much past research was focused on establishing when the rise of atmospheric oxygen took place, recognition that substantial mass-independent fraction (MIF) of the sulphur isotopes is restricted to the time interval before 2.45 Ga and requires an anoxic atmosphere (Farquhar et al. 2000, 2007; Mojzsis et al. 2003; Ono et al. 2003; Bekker et al. 2004) argues the atmosphere became permanently oxygenated at this time (Pavlov and Kasting 2002). A false-start to the modern aerobic biosphere and a “whiff” of atmospheric oxygen (Anbar et al. 2007) may have occurred in the latest Archaean, as reflected in a transient enrichment in the redox-sensitive element molybdenum in marine shales and a reduction in the extent of MIF precisely coincident with the peak in Mo and FeS2 enrichment (Kaufman et al. 2007). Geochemical proxies are imperfect, and an earlier (c. 3 Ga) appearance of atmospheric oxygen is possible (Ohmoto et al. 2006) but disputed (Farquhar et al. 2007; Buick 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babinski M, Chemale F Jr, Van Schmus WR (1995) The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilátero Ferrífero, Brazil. Precambrian Res 72:235–245

    Google Scholar 

  • Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications of carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137

    Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implication for coupled climate and carbon cycling. Am J Sci 301:261–285

    Google Scholar 

  • Bekker A, Karhu JA, Eriksson KA, Kaufman AJ (2003a) Chemostratigraphy of the Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? Precambrian Res 120:279–325

    Google Scholar 

  • Bekker A, Sial AN, Karhu JA (2003b) Chemostratigraphy of carbonates from Minas Supergroup, Quadrilatero Ferrifero (Iron Quadrangle), Brazil: a stratigraphic record of Early Proterozoic atmospheric, biogeochemical and climatic change. Am J Sci 330:865–904

    Google Scholar 

  • Bekker A, Karhu JA, Kaufman AJ (2006) Carbon isotope record for onset of the Lomagundi carbon isotope excursion in Great Lakes area, North America. Precambrian Res 148:145–180

    Google Scholar 

  • Bowring SA, Grotzinger JP (1992) Implications of new chronostratigraphy for tectonic evolution of Wopmay orogen, northwest Canadien Shield. Am J Sci 292:1–20

    Google Scholar 

  • Brass GW (1976) The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model. Geochim Cosmochim Acta 40:721–730

    Google Scholar 

  • Cameron EM (1983) Evidence from early Proterozoic anhydrite for sulphur isotope partitioning in Precambrian ocean. Nature 304:54–56

    Google Scholar 

  • Deb M, Hoefs J, Baumann A (1991) Isotopic composition of two Precambrian stratiform barite deposits from the Indian shield. Geochim Cosmochim Acta 55:303–308

    Google Scholar 

  • Denison RE, Koepnick RB, Burke WH, Hetherington EA, Fletcher A (1997) Construction of the Silurian and Devonian seawater 87Sr/86Sr curve. Chem Geol 140:109–121

    Google Scholar 

  • Denison RE, Koepnick RB, Burke WH, Hetherington EA (1998) Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem Geol 152:325–340

    Google Scholar 

  • Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:1317–1329

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. Willey, New York, p 589

    Google Scholar 

  • Faure G, Hurley PM, Powell JK (1965) The isotopic composition of strontium in surface water from the north Atlantic Ocean. Geochim Cosmochim Acta 29:209–220

    Google Scholar 

  • Fietzke J, Liebetrau V, Gunter D, Gurs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal Atom Spectrom 23:955–961

    Google Scholar 

  • Frauenstein F, Veizer J, Beukes N, van Niekerk HS, Coetzee LL (2009) Transvaal Supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160

    Google Scholar 

  • Goldberg ED (1963) The oceans as a chemical system. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 3–25

    Google Scholar 

  • Goldstein SJ, Jacobsen SB (1987) The Nd and Sr isotopic systematics of river water-dissolved material: implications for the sources of Nd and Sr in seawater. Chem Geol (Isot Geosci Sect) 66:245–272

    Google Scholar 

  • Gorokhov IM, Semikhatov MA, Baskakov AV, Kutyavin EP, Mel’nikov NN, Sochava AV, Turchenko TL (1995) Sr isotopic composition in Riphean, Vendian, and Lower Cambrian carbonates from Siberia. Stratigr Geol Correl 3:1–28

    Google Scholar 

  • Gorokhov IM, Kuznetsov AB, Melezhik VA, Konstantinova GV, Melnikov NN (1998) Sr isotopic composition in the Upper Jatulian (Early Paleoproterozoic) dolomites of the Tulomozero Formation, southeastern Karelia. Dokl Earth Sci 360:609–612

    Google Scholar 

  • Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet Sci Lett 272:406–411

    Google Scholar 

  • Halverson GP, Dudas FO, Maloof AS, Bowring SA (2007) Evolution of 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeocl Palaeoecol 256:103–129

    Google Scholar 

  • Hodell DA, Mueller PA, McKenzie JA, Mead GA (1989) Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth Planet Sci Lett 92:165–178

    Google Scholar 

  • Kamber BS, Webb G (2001) The geochemistry of late Archean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525

    Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120:409–430

    Google Scholar 

  • Koepnick RB, Burke WH, Denison RE, Hetherington EA, Nelson HF, Otto JB, Waite LE (1985) Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data. Chem Geol (Isot Geosci Sect) 58:55–81

    Google Scholar 

  • Krabbenhoft A, Eisenhauer A, Bohm F, Vollstaedt H, Fietzke J, Liebetrau V, Augustin N, Peucker-Ehrenbrink B, Muller MN, Horn C, Hansen BT, Notle N, Wallmann K (2010) Constraining the marine strontium budget with natural isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim Cosmochim Acta 74:1097–4109

    Google Scholar 

  • Kuznetsov AB, Melezhik VA, Gorokhov IM, Melnikov NN, Fallick AE (2003) Sr isotope composition in Paleoproterozoic carbonates extremely enriched in 13C: Kaniapiskau Supergroup, the Labrador trough of the Canadian shield. Stratigr Geol Correl 11:209–219

    Google Scholar 

  • Kuznetsov AB, Ovchinnikova GV, Semikhatov MA, Gorokhov IM, Kaurova OK, Krupenin MT, Vasil’eva IM, Gorokhovskii BM, Maslov AV (2008) The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka formation, the Lower Riphean Burzyan Group of the southern Urals. Stratigr Geol Correl 16:120–137

    Google Scholar 

  • Kuznetsov AB, Melezhik VA, Gorokhov IM, Melnikov NN, Konstantinova GV, Kutyavin EP, Turchenko TL (2010) Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield. Precambrian Res 182:300–312

    Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS. Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Google Scholar 

  • Melezhik VA (2006) Multiple causes of Earth’s earliest global glaciation. Terra Nova 18:130–137

    Google Scholar 

  • Melezhik VA, Fallick AE, Kuznetsov AB (2005a) Palaeoproterozoic, rift-related, 13C-rich, lacustrine carbonates, NW Russia. Part II: Global isotopic signal recorded in the lacustrine dolostone. Trans Roy Soc Edinb Earth Sci 95:423–444

    Google Scholar 

  • Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB (2005b) Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, δ13C excursions and the rise of atmospheric oxygen. Terra Nova 17:141–148

    Google Scholar 

  • Melezhik VA, Huhma H, Condon DJ, Fallick AE, Whitehouse MJ (2007) Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology 35:655–658

    Google Scholar 

  • Mirota MD, Veizer J (1994) Geochemistry of Precambrian carbonates: VI. Aphebian Albanel Formations, Quebec, Canada. Geochim Cosmochim Acta 58:1735–1745

    Google Scholar 

  • Nier AO (1938) The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Phys Rev 5:275–279

    Google Scholar 

  • Paytan A, Kastner M, Martin EE, Macdougall JD, Herbert T (1993) Marine barite as a monitor of seawater strontium isotope composition. Nature 366:445–449

    Google Scholar 

  • Peterman ZL, Hedge CE, Tourtelot HA (1970) Isotopic composition of strontium in sea water throughout Phanerozoic time. Geochim Cosmochim Acta 34:105–120

    Google Scholar 

  • Ohno T, Komiya T, Ueno Yu, Hirata T, Maruyama S (2008) Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation. Gondwana Res 14:126–133

    Google Scholar 

  • Ovchinnikova GV, Kuznetsov AB, Melezhik VA, Gorokhov IM, Vasil’eva IM, Gorokhovskii BM (2007) Pb-Pb age of Jatulian carbonate rocks: the Tulomozero Formation of southeast Karelia. Stratigr Geol Correl 15:359–372

    Google Scholar 

  • Ray JS, Veizer J, Davis WJ (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Res 121:103–140

    Google Scholar 

  • Rohon M-L, Vialette Y, Clark T, Roger G, Ohnenstetter D, Vidal Ph (1993) Aphebian mafic-ultramafic magmatism in the Labrador trough (New Quebec): its age and the nature of its mantle source. Can J Earth Sci 30:1582–1593

    Google Scholar 

  • Rueggeberg A, Fietzke J, Liebetrau V, Eisenhauer A, Dullo WC, Freiwald A (2008) Stable strontium isotope (δ88/86Sr) in cold-water corals – a new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:569–574

    Google Scholar 

  • Schneiderhan EA, Gutzmer J, Strauss H, Mezger K, Beukes NJ (2006) The chemostratigraphy of a Paleoproterozoic MnF- and BIF succession – the Voelwater Subgroup of the Transvaal Supergroup in Griqualand West, South Africa. S Afr J Geol 109:63–80

    Google Scholar 

  • Semikhatov MA, Kuznetsov AB, Gorokhov IM, Konstantinova GV, Melnikov NN, Podkovyrov VN, Kutyavin EP (2002) Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time. Determining factors. Stratigr Geol Correl 10:1–41

    Google Scholar 

  • Shields GA (2007) A normalized seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and further oxygenation of the Earth. eEarth 2:35–42

    Google Scholar 

  • Spooner ETC (1976) The strontium isotopic composition of seawater, and seawater-oceanic crust interaction. Earth Planet Sci Lett 31:167–174

    Google Scholar 

  • Sumner DY, Bowring SA (1996) U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res 79:25–35

    Google Scholar 

  • Tremba EL, Faure G, Katiskatos GC, Sumerson CH (1975) Strontium-isotopic composition in the Thetys Sea, Euboea, Greece. Chem Geol 16:109–120

    Google Scholar 

  • Veizer J, Compston W (1974) 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim Cosmochim Acta 38:1461–1484

    Google Scholar 

  • Veizer J, Compston W (1976) 87Sr/86Sr in Precambrian carbonates as an index of crustal evolution. Geochim Cosmochim Acta 40:905–914

    Google Scholar 

  • Veizer J, Hoefs J, Lowe DR, Thurston PC (1989) Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean seawater. Geochim Cosmochim Acta 53:859–871

    Google Scholar 

  • Veizer J, Clayton RN, Hinton RW (1992a) Geochemistry of Precambrian carbonates: IV. Early Paleoproterozoic (2.25 ± 0.25) seawater. Geochim Cosmochim Acta 56:875–885

    Google Scholar 

  • Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992b) Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochim Cosmochim Acta 56:2487–2501

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, 18O and 13C evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee R. Kump .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kump, L.R. et al. (2013). 7.10 Chemical Characteristics of Sediments and Seawater. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_10

Download citation

Publish with us

Policies and ethics