Skip to main content

The Impact Dynamics

  • Chapter
  • First Online:
Book cover The Mjølnir Impact Event and its Consequences

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Together with geological/geophysical studies and laboratory-scale experiments numerical simulations of impacts contribute a great deal to our knowledge of the cratering process. Whereas field studies give information about target conditions and final crater configuration, numerical modeling allow us to follow the evolving process in time and to reconstruct several important features not surviving after the cessation of the impact event and later time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adushkin VV, Nemchinov IV (1994) Consequences of impacts of cosmic bodies on the surface of the Earth. In: Gehrels T (ed) Hazards due to Comets and Asteroids. University Arizona Press, Tucson and London, pp 721–778

    Google Scholar 

  • Artemieva NA, Shuvalov VV (2002) Shock metamorphism on the ocean floor (numerical simulations). Deep Sea Res Part II Top Stud Oceanogr 49(6):959–968

    Article  Google Scholar 

  • Collins GS, Turtle EP, Melosh HJ (2003) Numerical simulations of Silverpit crater collapse [abs] Lunar Planet Sci Conf 34, abs #2115, CD-ROM

    Google Scholar 

  • Crawford DA, Barnouin-Jha OS (2004) Computational investigations of the Chesapeake Bay impact structure [abs]. Lunar Planet Sci 35, abs #1757, CD-ROM

    Google Scholar 

  • Dienes JK, Walsh JM (1970) Theory of impact: some general principles and the method of Eulerian codes. In: Kinslow R (ed) High-velocity impact phenomena. Academic Press, New York, pp 46–104

    Google Scholar 

  • Dypvik H, Jansa L (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geol 161:309–337

    Article  Google Scholar 

  • Ekholm AG, Melosh JH (2001) Crater features diagnostic of oblique impacts: the size and position of the central peak. Geophys Res Lett 28:623–626

    Article  Google Scholar 

  • Gault DE, Sonett CP (1982) Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography and the surface wave radiation field. In: French BM, Schultz PH (eds) Geological implications of impacts of large asteroids and comtes on the Earth. Geol Soc Am Spec Paper 190:69–92

    Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impact. Proc Lunar Planet Sci 9:3843–3875

    Google Scholar 

  • Gersonde R, Kyte FT, Bleil U, Diekmann B, Flores JA, Gohl K, Grahl G, Hagen R, Kuhn G, Sierro FJ, Völker D, Abelmann A, Bostwick JA (1997) Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390:357–363

    Article  Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons, 3rd edn. US Department of Defense and US Department of Energy, US Government Printing Office, Washington, p 653

    Google Scholar 

  • Glimsdal S, Pedersen GK, Langtangen HP, Shuvalov V, Dypvik H (2007) Tsunami generation and propagation from the Mjølnir asteroid impact. Meteorit Planet Sci 42:1473–1493

    Article  Google Scholar 

  • Ivanov BA, Turtle EP (2001) Modeling impact crater collapse acoustic fluidization implemented into a hydrocode [abs]. Lunar Planet Sci Conf 32, abs#1284, CD-ROM

    Google Scholar 

  • Kuznetsov NM (1965) Thermodynamic functions and shock adiabats for air at high temperatures. Mashinostroyenie, Moscow, p 464 (in Russian)

    Google Scholar 

  • Kyte FT, Langenhorst F, Tepley FJ III (2000) The Eltanin meteorite: Large messenger from the HED or mesosiderite parent body? [abs]. Lunar Planet Sci Conf 31, abs #1811, CD-ROM

    Google Scholar 

  • Lindström M, Shuvalov V, Ivanov B (2005) Lockne crater as a result of marine-target oblique impact. Planet Space Sci 53:803–815

    Article  Google Scholar 

  • Lundborg N (1968) Strength of rock-like materials. Int J Rock Mech Min Sci 5:427–454

    Article  Google Scholar 

  • McGetchin TR, Settle M, Head JW (1973) Radial thickness variation in impact crater ejecta: implications for lunar basin deposits. Earth Planet Sci Lett 20:226–236

    Article  Google Scholar 

  • McGlaun JM, Thompson SL, Elrick MG (1990) CTH: a three-dimensional shock wave physics code. Int J Impact Eng 10:351–360

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Melosh HJ (2003) Impact-generated tsunamis: An over-rated hazard [abs]. Lunar Planet Sci Conf 34, abs #2013, CD-ROM

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–425

    Article  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1982) The interaction of the Cretaceous/Tertiary Extinction Bolide with atmosphere, ocean and solid Earth. In: Silver LT, Schultz PH (eds) Geological implications of large asteroids and comets on the Earth. Geol Soc Am Spec Paper 190:103–120

    Google Scholar 

  • O’Keefe JD, Stewart ST, Lainhart ME, Ahrens TJ (2001b) Damage and rockvolatile mixture effects on impact crater formation. Int J Impact Eng 26:543–553

    Article  Google Scholar 

  • Ormö J, Lindström M (2000) When a cosmic impact strikes the seabed. Geol Mag 137:67–80

    Article  Google Scholar 

  • Ormö J, Shuvalov V, Lindström M (2002) Numerical modeling for target water depth estimation of marine target impact craters. J Geophys Res 107:3-1–3-9, doi:10.1029/2002JE001865

    Article  Google Scholar 

  • Pierazzo E, Artemieva N, Ivanov B (2005) Starting conditions for hydrothermal systems underneath Martian craters: Hydrocode modeling. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America Special Paper 384, Boulder, pp 443–457

    Chapter  Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact even. Earth Planet Sci Lett 165:163–176

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Understanding oblique impacts from experiments, observations, and modeling. Ann Rev Earth Planet Sci 28:141–167

    Article  Google Scholar 

  • Pierazzo E, Vickery AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127:408–423

    Article  Google Scholar 

  • Quaide WL, Oberbeck VR (1968) Thickness determinations of the lunar surface layer from lunar impact craters. J Geophys Res 73:5247–5270

    Article  Google Scholar 

  • Roddy DJ, Schuster SH, Rosenblatt M, Grant LB, Hassig PJ, Kreyenhagen KN (1987) Computer simulations of large asteroid impacts into oceanic and continental sites – preliminary results on atmospheric, cratering and ejecta dynamics. Int J Impact Eng 5:525–541

    Article  Google Scholar 

  • Schultz PH (1999) Ejecta distributions from oblique impacts into particulate targets [abs]. Lunar Planet Sci Conf 30, abs #1919

    Google Scholar 

  • Schultz PH, Gault DE (1992) Recognizing impact signatures in the planetary record [abs] International conference on large meteorite impacts and planetary evolution, Sudbury, Canada. Lunar and Planetary Institute, Houston, Texas, Contribution

    Google Scholar 

  • Shuvalov VV (1999) Multidimensional hydrodynamic code SOVA for interfacial flows: Application to thermal layer effect. Shock Waves 9:381–390

    Article  Google Scholar 

  • Shuvalov VV (2002a) Numerical model of dust ejection induced by meteoroid impacts. Int J Impact Eng 27:377–385

    Article  Google Scholar 

  • Shuvalov VV (2003a) Mechanisms of Tsunami generation by impacts [abs] Large Meteorite Impacts 3, Nördlingen, August 2003

    Google Scholar 

  • Shuvalov VV (2003b) Numerical modeling of the Eltanin impact. Meteorit Planet Sci 38, [abs], # 5149

    Google Scholar 

  • Shuvalov VV, Dypvik H (2004) Ejecta formation and crater development of the Mjølnir impact. Meteorit Planet Sci 39:467–479

    Article  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Thompson SL, Lauson HS (1972) Improvements in the chart D radiation-hydrodynamic CODE III: Revised analytic equations of state. Report SC-RR-71 0714. Sandia National Laboratory, Albuquerque, p 119

    Google Scholar 

  • Tillotson JH (1962) Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216:137

    Google Scholar 

  • Tsikalas F (1992) A study of seismic velocity, density and porosity in Barents Sea wells (N-Norway). Master thesis. University of Oslo, Oslo, p 169

    Google Scholar 

  • Tsikalas F (2005) Mjølnir Ccater as a result of oblique impact: Asymmetry evidence constrains impact direction and angle. In: Koeberl C, Henkel H (eds) Impact tectonism. Impact Studies. Springer, Berlin-Heidelberg, pp 285–306

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Eldholm O, Faleide JI (1998c) Integrated geophysical analysis supporting the impact origin of the Mjølnir Structure, Barents Sea. Tectonophysics 289:257–280

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110:537–552

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) The anatomy of a buried complex impact structure: The Mjølnir Structure, Barents Sea. J Geophys Res 103:30469–30484

    Article  Google Scholar 

  • Ward SN, Asphaug E (2003) Asteroid Impact Tsunami of 2880 March 16. Geophys J Int 153:F6–F10

    Article  Google Scholar 

  • Weiss R, Wünnemann K, Bahlburg H (2003) Oceanic impacts, tsunamis, and the influence of the water depth on the quantity and characteristics of the generated waves [abs] Large Meteorite Impacts 3, abs #4081, Nördlingen, CD ROM

    Google Scholar 

  • Zamyshlyaev BV, Evterev LS (1990) Models of dynamic deforming and failure for ground media. Nauka Press, Moscow, p 215 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Shuvalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shuvalov, V., Dypvik, H., Tsikalas, F. (2010). The Impact Dynamics. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_7

Download citation

Publish with us

Policies and ethics