Skip to main content

Ejecta Geology

  • Chapter
  • First Online:
The Mjølnir Impact Event and its Consequences

Part of the book series: Impact Studies ((IMPACTSTUD))

  • 579 Accesses

Abstract

Ejecta recognition is an important factor in impact research and has been a key element in the Mjølnir impact studies. The characterization of ejecta covers several different geological and geophysical topics as summarized in French (1998) and Montanari and Koeberl (2000). In particular in studies of marine impact events (submarine craters) or in cases where the impact site has not been recognized, ejecta recognition is crucial. This is well exemplified in the K/T investigations and the Chicxulub impact structure (Alvarez et al. 1995; Smit 1999), in the investigations of the North American tektite (melt particles formed by impact, partly melt of target material, immediately before crater formation) strewn fields and the Chesapeake Bay crater (Koeberl 1989; Poag et al. 2004) as well as in the investigations of the Precambrian spherule beds of Australia and South Africa, where still no impact sites have been recognized (Simonson et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous Tertiary boundary shocked quartz from Chicxulub crater. Science 18:930–935

    Article  Google Scholar 

  • Århus N (1991) Dinoflagellate cyst stratigraphy of some Aptian and Albian sections from northern Greenland, southeast Spitsbergen and Barents Sea. Cretaceous Res 12:209–225

    Article  Google Scholar 

  • Århus N, Kelley SRA, Collins JSH, Sandy MR (1990) Systematic palaeontology and biostratigraphy of two Lower Cretaceous condensed sections from the Barents sea. Polar Res 8(2):165–194

    Article  Google Scholar 

  • Bremer GMA, Smelror M, Nagy J, Vigran JO (2004) Biotic responses to the Mjølnir meteorite impact, Barents Sea: evidence from a core drilled within the crater. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice, Springer Series in Impact studies. Springer, Berlin-Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous–Tertiary boundary. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Boulder, pp 55–68

    Chapter  Google Scholar 

  • DeClercq J, Dypvik H, Aagaard P, Jahren J, Ferrell RE Jr, Horton JW Jr (2009) Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure. In: Gohn G, Koeberl C, Miller KG, Reimold WO (eds) The ICDP – deep drilling project in the Chesapeake Bay impact structure: results from the Eyreville Core Holes. Geol Soc Am Spec Paper 458:559–570

    Google Scholar 

  • Dypvik H, Attrep M Jr (1999) Geochemical signals of the late Jurassic, marine Mjølnir impact. Meteorit Planet Sci 34:393–406

    Article  Google Scholar 

  • Dypvik H, Ferrell RE Jr (1998) Clay mineral alteration associated with a meteoric impact in the marine environment (Barents Sea). Clay Miner 33:51–64

    Article  Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) The Mjølnir structure – an impact crater in the Barents Sea. Geology 24:779–782

    Article  Google Scholar 

  • Dypvik H, Håkansson E, Heinberg C (2002) Jurassic and Cretaceous paleogeography and stratigraphic comparison in the North Greenland–Svalbard regions. Polar Res 21:91–108

    Article  Google Scholar 

  • Dypvik H, Mørk A, Smelror M, Sandbakken PT, Tsikalas F, Vigran JO, Bremer GMA, Nagy J, Gabrielsen RH, Faleide JI, Bahiru M, Weiss H (2004b) Impact breccia and ejecta from Mjølnir crater in the Barents Sea – The Ragnarok Formation and Sindre Bed. Nor Geologisk Tidsskrift 84:143–167

    Google Scholar 

  • Dypvik H, Smelror M, Sandbakken PT, Salvigsen O, Kalleson E (2006) Traces of the marine Mjølnir impact event. Palaeogeogr Palaeoclimatol Palaeoecol 241:621–634

    Article  Google Scholar 

  • Dypvik H, Wolbach WS, Shuvalov V, Weaver SLW (2008b) Did the Mjølnir asteroid impact ignite Barents Sea hydrocarbon source rocks? In: Evans KR, Horton JW Jr, King DT Jr, Morrow JR (eds) The Sedimentary record of meteorite impacts. Geological Society of America Special Paper 437, Boulder, pp 65–72

    Google Scholar 

  • Dypvik H, Zakharov V (2010) Mechanisms of late synimpact to early postimpact crater sedimentation in marine-target impact structures. In: Gibson RL, Reimold WU (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465: 301–318

    Google Scholar 

  • Fernandes MB, Skjemstad JO, Johnson BB, Wells JD, Brooks P (2003) Characterization of carbonaceous combustion residues I. Morphological, elemental and spectroscopic features. Chemosphere 51:785–795

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shockmetamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Iinstitute Contribution No 954, Lunar and Planetary Institute, Houston, p 120

    Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A geological time scale. Cambridge University Press, Cambridge, p 589

    Book  Google Scholar 

  • Koeberl C (1989) New estimates of area and mass of the North American tektite strewn field. Proceedings of the 19th Lunar and Planetary Science Conference. Houston, Cambridge University Press, pp 745–751

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact stratigraphy-The Italian record. Springer, Berlin-Heidelberg, p 364

    Google Scholar 

  • Nagy J, Basov VA (1998) Revised foraminiferal taxa and biostratigraphy of Bathonian to Ryazanian deposits in Spitsbergen. Micropaleontology 44:217–255

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake Bay crater: Geology and geophysics of a Late Eocene submarine impact structure. Springer, Berlin-Heidelberg, p 522

    Book  Google Scholar 

  • Robin E, Rocchia R, Siret D, Dypvik H (2001) Discovery of nickel iron particles in the ejecta bearing strata of the latest Jurassic Mjølnir meteorite impact (Barents Sea). Norwegian Geol Soc Abstr Ser 1:67–68

    Google Scholar 

  • Rokoengen K, Mørk A, Mørk MBE, Smelror M (2005) The irregular base Cretaceous reflector offshore Mid Norway: A possible result of the Mjølnir impact in the Barents Sea? Geol Surv Norway Bull 443:19–27

    Google Scholar 

  • Shuvalov VV, Dypvik H (2004) Ejecta formation and crater development of the Mjølnir impact. Meteorit Planet Sci 39:467–479

    Article  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Simonson BM, Davies D, Wallace M, Reeves S, Hassler SW (1998) Iridium anomaly but no shocked quartz from Late Archean microkrystite layer: Oceanic impact ejecta? Geology 26:195–198

    Article  Google Scholar 

  • Smelror M, Dypvik H (2005) Dinoflagellate cyst and prasinophyte biostratigraphy of the Volgian-Ryazanian boundary strata, western Barents Shelf. Nor Geologiske Undersøkelse Bull 443:61–69

    Google Scholar 

  • Smelror M, Dypvik H, Mørk A (2002) Phytoplankton blooms in the Jurassic Cretaceous boundary beds of the Barents Sea possibly induced by the Mjølnir impact. In Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Lecture notes in Earth Sciences, Impact Studies. Springer, Berlin-Heidelberg, pp 69–81

    Chapter  Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001a) Mjølnir (Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsl Stratigr 38:129–140

    Article  Google Scholar 

  • Smelror M, Mørk A, Monteil E, Rutledge D, Leereveld H (1998) The Klippfisk Formation – a new lithostratigraphic unit of lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Res 17(2):181–202

    Article  Google Scholar 

  • Smelror M, Mørk MBE, Mørk A, Løseth H, Weiss HM (2001b) Middle Jurassic-Lower Cretaceous transgressive-regressive sequences and facies distribution off Troms, northern Norway. In: Martinsen OJ, Dreyer T (eds) Sedimentary environments offshore Norway – Palaeozoic to recent. Norwegian Pet Soc Spec Publ 10:211–232

    Google Scholar 

  • Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Ann Rev Earth Planet Sci 27:75–113

    Article  Google Scholar 

  • Tsikalas F (2005) Mjølnir Ccater as a result of oblique impact: Asymmetry evidence constrains impact direction and angle. In: Koeberl C, Henkel H (eds) Impact tectonism. Impact Studies. Springer, Berlin-Heidelberg, pp 285–306

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002a) The Mjølnir marine impact crater porosity anomaly. Deep Sea Res Part II 49:1103–1120

    Article  Google Scholar 

  • Wolbach WS, Widicus S, Dypvik H (2001) A preliminary search for evidence of impact-related burning near the Mjølnir impact structure, Barents Sea [abs] Lunar Planet Sci Conf 32, abs #1332, CD-ROM

    Google Scholar 

  • Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norwegian Pet Directorate Bull 4:42–65

    Google Scholar 

  • Zakharov VA, Lapukhoy AS, Shenfil OV (1993) Iridium anomaly at the Jurassic-Cretaceous boundary in northern Siberia. Russian J Geol Geophys 34:83–90

    Google Scholar 

  • Zakharov VA, Pruner P, Rogov MA (2007) Advances in correlation of the Jurassic-Cretaceous boundary interval of Arctic and south Europe based on magne- to- and biostratigraphy. The Arctic Conference Days. Abstr Proc Geol Soc Norway 2:315–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Dypvik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dypvik, H., Smelror, M., Mørk, A., Tsikalas, F. (2010). Ejecta Geology. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_6

Download citation

Publish with us

Policies and ethics