Skip to main content

Impact Geophysics and Modelling

  • Chapter
  • First Online:
  • 634 Accesses

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

During impact, the passage of the shock wave results in extensive in situ fracturing and autochthonous target rock brecciation. Target material is excavated and ejected in ballistic trajectories upward and outward from the impact site. As excavation of the brecciated volume advances, the excavated crater is formed. It delimits the provenance of material expelled from the crater and provides the void space for subsequent infilling of allogenic material and breccia (e.g., Melosh 1989; Turtle et al. 2005). Therefore, the disturbance beneath Mjølnir is expected to be associated with two types of breccia: allochtonous and autochthonous (Tsikalas et al. 1998b, 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexopoulos JS, McKinnon WB (1994) Large impact craters and basins on Venus, with implications for ring mechanics on the terrestrial planets. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geological Society of America Special Paper 293, Boulder, pp 29–50

    Google Scholar 

  • Åm K (1975) Magnetic profiling over Svalbard and surrounding shelf areas. Nor Polarinstitutt Årbok 1973:87–89

    Google Scholar 

  • Anderson RR, Witzke BJ, Roddy DJ (1996) The drilling of the 1991–1992 geological survey bureau and US Geological Survey Manson impact structure research cores. In: Koeberl C, Anderson RR (eds) The manson impact structure, Iowa: Anatomy of an impact crater. Geological Society of America Special Paper 302, Boulder, pp 45–88

    Chapter  Google Scholar 

  • Artemieva NA, Shuvalov VV (2001) Extraterrestrial material deposition after the impacts into continental and oceanic sites. In: Buffetaut E, Koeberl C (eds) Impact studies (Geological and biological effects of impact events). Springer, Berlin-Heidelberg, pp 249–263

    Google Scholar 

  • Barton PJ (1986) The relationship between seismic velocity and density in the continental crust - a useful constraint? Geophys J R Astron Soc 87:195–208

    Article  Google Scholar 

  • Bergendahl E (1989) Halokinetisk utvikling av Nordkappbassengets sørvestre segment. Cand scient (candidatus scientiarum) Thesis. University of Oslo, Oslo, p 120

    Google Scholar 

  • Berglund LT, Augustson J, Færseth R, Gjelberg J, Ramberg-Moe H (1986) The evolution of the Hammerfest Basin. In: Spencer AM et al (ed) Habitat of hydrocarbons on the Norwegian Continental Shelf. Graham and Trotman, London, pp 319–338

    Google Scholar 

  • Brekke H, Kalheim JE, Riis F, Egeland B, Blystad P, Johnsen S, Ragnhildstveit J (1992) Two-way time map of the unconformity at the base of the Upper Jurassic (north of 69°N) and the unconformity at the base of the Cretaceous (south of 69°N), offshore Norway, including the main geological trends onshore, scale 1:2 millions. Norwegian Petroleum Directorate, Continental Shelf Map No 1

    Google Scholar 

  • Brekke H, Sjulstad HI, Magnus C, Williams RW (2001) Sedimentary environments offshore Norway – an overview. In: Martinsen OJ, Dreyer T (eds) Sedimentary environments offshore Norway – Paleozoic to recent. Norwegian Pet Soc Spec Publ 10:7–37

    Google Scholar 

  • Breivik AJ, Gudlaugsson ST, Faleide JI (1995) Ottar Basin, SW Barents Sea: a major Upper Paleozoic rift basin containing large volumes of deeply buried salt. Basin Res 7:299–312

    Article  Google Scholar 

  • Burchell MJ, Mackay NG (1998) Crater ellipticity in hypervelocity impact on metals. J Geophys Res 103:22761–22774

    Article  Google Scholar 

  • Carpenter BN, Carlson R (1997) The Ames meteorite-impact crater. Oklahoma Geol Surv Circ 100:104–119

    Google Scholar 

  • Cintala MJ, Grieve RAF (1994) The effects of differential scaling of impact melt and crater dimensions on lunar and terrestrial craters: Some brief examples. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geological Society of America Special Paper 293, Boulder, pp 51–59

    Google Scholar 

  • Croft SK (1985) The scaling of complex craters. Proc 15th Lunar Planet Sci Conf Part 2 J Geophys Res 90:C828–C842

    Article  Google Scholar 

  • Dahl JM, Schultz PH (2000) Strain rate measurements in vertical and oblique projectile impact experiments [abs]. Lunar Planet Sci 31, abs# 1901, CD-ROM

    Google Scholar 

  • Dahl JM, Schultz PH (2001) Measurements of stress wave asymmetries in hypervelocity projectile impact experiments. Int J Impact Eng 26:145–155

    Article  Google Scholar 

  • Donofrio RR (1981) Impact craters: implications for basement hydrocarbon production. J Pet Geol 3:279–302

    Article  Google Scholar 

  • Donofrio RR (1998) North American impact structures hold giant field potential. Oil Gas J 96:69–83

    Google Scholar 

  • Doré AG, Jensen LN (1996) The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins. In: Solheim A et al (ed) Impact of glaciations on basin evolution: data and models from the Norwegian margin and adjacent areas. Glob Planet Change 12:415–436

    Google Scholar 

  • Dypvik H, Burchell MJ, Claeys P (2004a) Impacts into marine and icy environments. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Springer, Berlin-Heidelberg, pp 1–20

    Chapter  Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) The Mjølnir structure – an impact crater in the Barents Sea. Geology 24:779–782

    Article  Google Scholar 

  • Dypvik H, Jansa L (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geol 161:309–337

    Article  Google Scholar 

  • Dypvik H, Mørk A, Smelror M, Sandbakken PT, Tsikalas F, Vigran JO, Bremer GMA, Nagy J, Gabrielsen RH, Faleide JI, Bahiru M, Weiss H (2004b) Impact breccia and ejecta from Mjølnir crater in the Barents Sea – The Ragnarok Formation and Sindre Bed. Nor Geologisk Tidsskrift 84:143–167

    Google Scholar 

  • Ekholm AG, Melosh JH (2001) Crater features diagnostic of oblique impacts: the size and position of the central peak. Geophys Res Lett 28:623–626

    Article  Google Scholar 

  • Espindola JM, Mena M, de La Fuente M, Campos-Enriquez JO (1995) A model of the Chicxulub impact structure (Yucatan, Mexico) based on its gravity and magnetic signatures. Phys Earth Planet Int 92:271–278

    Article  Google Scholar 

  • Faleide JI, Tsikalas F, Breivik AJ, Mjelde R, Ritzmann O, Engen Ø, Wilson J, Eldholm O (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. In: Gee D, Ladenberger A (eds) Nordic geoscience and 33rd IGC 2008, Episodes, Special Issue 31:82–91

    Google Scholar 

  • Faleide JI, Vågnes E, Gudlaugsson ST (1993) Late Mesozoic-Cenozoic evolution of the southwestern Barents Sea in a rift shear tectonic setting. Mar Pet Geol 10:186–214

    Article  Google Scholar 

  • Fjæran T, Spencer AM (1991) Proven hydrocarbon plays, offshore Norway. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. European Association of Petroleum Geoscientists Special Publication No 1. Oxford University Press, Oxford, pp 25–48

    Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian Continental Shelf. Part I: The Barents Sea Region. Norwegian Pet Directorate Bull 6:33

    Google Scholar 

  • Gabrielsen RH, Kløvjan OS, Rasmussen A, Stølan T (1992b) Interaction between halokinesis and faulting: structuring of the margins of the Nordkapp Basin, Barents Sea region. In: Larsen RM, Brekke H, Larsen BT, Talleraas E (eds) Structural and tectonic modelling and its application to petroleum geology. Norwegian Pet Soc Spec Publ 1:121–131

    Google Scholar 

  • Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Article  Google Scholar 

  • Gault DE, Sonett CP (1982) Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography and the surface wave radiation field. In: French BM, Schultz PH (eds) Geological implications of impacts of large asteroids and comtes on the Earth. Geol Soc Am Spec Paper 190:69–92

    Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impact. Proc Lunar Planet Sci 9:3843–3875

    Google Scholar 

  • Gérard J, Buhrig, C (1990) Seismic facies of the permian section of the barents shelf: analysis and interpretation. Mar Pet Geol 7:234–252

    Article  Google Scholar 

  • Gerhard LC, Anderson SB, Lefever JA, Carlson CG (1982) Geological development, origin, and energy mineral resources of Williston Basin, North Dakota. Am Assoc Pet Geol Bull 66:989–1020

    Google Scholar 

  • Gjelberg J, Dreyer T, Høie A, Tjelland T, Lilleng T (1987) Late Triassic to Mid-Jurassic sandbody development on the Barents and Mid-Norwegian shelf. In: Brooks J, Glennie K (eds) Petroleum geology of North West Europe. Graham and Trotman, London, pp 1105–1129

    Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A geological time scale. Cambridge University Press, Cambridge, p 589

    Book  Google Scholar 

  • Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York, p 584

    Google Scholar 

  • Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194

    Article  Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Int Geol Rev 36:105–151

    Article  Google Scholar 

  • Grieve RAF, Pesonen LJ (1992) The terrestrial impact record. Tectonophysics 216:1–30

    Article  Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth Moon Planet 72:357–376

    Article  Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294

    Article  Google Scholar 

  • Gudlaugsson ST, Faleide JI, Johansen SE, Breivik AJ (1998) Late Palaeozoic structural development of the south-western Barents Sea. Mar Pet Geol 15:73–102

    Article  Google Scholar 

  • Gustavsen FB (1995) Maringeologiske undersøkelser av berggrunnen i det nordlige Barentshavet (mellom Svalbard og Franz Josef Land). Cand Scient (candidatus scientarium) Thesis. University of Oslo, Oslo, p 156

    Google Scholar 

  • Halvorsen E, Løvlie R, Andresen A (1996) Evidence of complete Tertiary remagnetization of Early Cretaceous dolerite dikes and sills from Spitsbergen, Svalbard. European Geophysical Society, 21st General Assembly, The Hague, C:138 [abs]

    Google Scholar 

  • Hammer S (1963) Deep gravity interpretation by stripping. Geophysics 28:369

    Article  Google Scholar 

  • Hayhurst CJ, Ranson HJ, Gardner DJ, Birnbaum NK (1995) Modelling of micro-article hypervelocity oblique impacts on thick targets. Int J Impact Eng 17:375–386

    Article  Google Scholar 

  • Heafford AP, Kelly SRA (1988) Carboniferous through Cretaceous panarctic tectonic events. In: Harland WB, Dowdeswell EK (eds) Geological evolution of the Barents Shelf region. Graham and Trotman, London, pp 19–32

    Google Scholar 

  • Hovland M, Jodd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham and Trotman, London, p 293

    Google Scholar 

  • Ivanov BA, Artemieva NA (2002) Numerical modelling of the formation of large impact craters. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impact and beyond. Geological Society of America Special Paper 356, Boulder, pp 619–630

    Chapter  Google Scholar 

  • Izett GA, Cobban WA, Obradovich JD, Kunk MD (1993) The Manson impact structure: 40Ar/39Ar age and its distal impact ejecta in the Pierre Shale in southeastern South Dakota. Science 262:729–732

    Article  Google Scholar 

  • Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 104:271–286

    Article  Google Scholar 

  • Jensen LN, Sørensen K (1992) Tectonic framework and halokinesis of the Nordkapp Basin. In: Larsen RM, Brekke H, Larsen BT, Talleraas E (eds) Structural and tectonic modelling and its application to petroleum geology. Norwegian Pet Soc Spec Publ 1:109–120

    Google Scholar 

  • Johansen SE, Ostisty BK, Birkeland Ø, Fedorovsky YF, Martirosjan VN, Bruun Christensen O, Cheredeev SI, Ignatenko EA, Margulis LS (1993) Hydrocarbon potential in the Barents Sea region: Play distribution and potential. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:273–320

    Google Scholar 

  • Juhlin C, Pedersen LB (1987) Reflection seismic investigations of the Siljan Impact Structure, Sweden. J Geophys Res 92:14113–14122

    Article  Google Scholar 

  • Kelly SRA (1988) Jurassic through Cretaceous stratigraphy of the Barents Shelf. In: Harland WB, Dowdeswell EK (eds) Geological evolution of the Barents Shelf region. Graham and Trotman, London, pp 109–130

    Google Scholar 

  • Kieffer SW, Simonds CH (1980) The role of volatiles and lithology in the impact cratering processes. Rev Geophys 18:143–181

    Article  Google Scholar 

  • Kirschner CE, Grantz A, Mullen MW (1992) Impact origin of the Avak structure, Arctic Alaska, and genesis of the Barrow gas fields. Am Assoc Pet Geol Bull 76:651–679

    Google Scholar 

  • Koyi H, Talbot CJ, Tørudbakken BO (1993) Salt diapirs of the southwest Nordkapp Basin: Analogue modelling. Tectonophysics 228:167–187

    Article  Google Scholar 

  • Larsen RM, Fjæran T, Skarpnes O (1992) Hydrocarbon potential of the Norwegian Barents Sea based on recent well results. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:321–331

    Google Scholar 

  • Lawver LA, Gahagan LM, Campbell DA, Brozena JM, Childers V (1999) Mid-Jurassic to Recent tectonic evolution of the Arctic region (Powerpoint animation, using the PLATES’ animation software) [abs]. In: Lawver LA, Brozena JM, Kovacs LC, Childers V (eds) Compilations in the Canada Basin, Aerogeophysical Anomalies. Eos, Transactions, American Geophysical Union, Fall Meeting 1999, San Francisco, 80(46), p 1000

    Google Scholar 

  • Linjordet A, Grung-Olsen R (1992) The Jurassic Snøhvit gas field, Hammerfest Basin, offshore northern Norway. Am Assoc Pet Geol Mem 54:349–370

    Google Scholar 

  • Ludwig JW, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The sea, vol 4. Wiley, New York, pp 53–84

    Google Scholar 

  • Mauring E, Kihle O (2006) Leveling aerogeophysical data using a moving differential median filter. Geophysics 71:L5–L11

    Article  Google Scholar 

  • McKinnon WB (1982) Impact into the Earth’s ocean floor: Preliminary experiments, a planetary model, and possibilities for detection. In: Silver LT, Schultz PH (eds) Geological implications of impacts of large asteroids and comets on Earth. Geological Society of America Special Paper 190, Boulder, pp 129–142

    Chapter  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Morgan JV, Warner MR (1999) The third dimension of a multiring impact basin. Geology 26:407–410

    Article  Google Scholar 

  • Morgan JV, Warner MR, Collins GS, Melosh HJ, Christeson GL (2000) Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth Planet Sci Lett 183:347–354

    Article  Google Scholar 

  • Nardin TR, Røssland KG (1992) Restoration of the eroded section in the western Barents Sea. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:607–618

    Google Scholar 

  • Nettleton LL (1976) Gravity and magnetics in oil prospecting. McGraw-Hill, New York, p 464

    Google Scholar 

  • Nøttvedt A, Cecchi M, Gjelbjerg JG, Kristensen SE, Lønøy A, Rasmussen A, Rasmussen E, Skott PH, van Veen PM (1993) Svalbard-Barents Sea correlation: A short review. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:363–375

    Google Scholar 

  • Nyland B, Jensen LN, Skagen J, Skarpnes P, Vorren TO (1992) Tertiary uplift and erosion in the Barents Sea: Magnitude, timing, and consequences. In: Structural and tectonic modeling and its application to the petroleum geology. Norwegian Pet Soc Spec Publ 1:153–162

    Google Scholar 

  • O’Keefe JD, Ahrens TJ (1985) Sampling of planetary material by oblique impact jet entrainment [abs]. Lunar Planet Sci 16:629–630

    Google Scholar 

  • Pesonen LJ, Lehtinen M, Deutsch A, Elo S, Lukkarinen H (1996) New geophysical and petrographic results of the Suvasvesi N impact structure, Finland. Lunar Planet Sci 27:1021

    Google Scholar 

  • Peters JL (1949) The direct approach to magnetic interpretation and its practical application. Geophysics 14:290–320

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (1999) Hydrocode modeling of Chicxulub as an oblique impact even. Earth Planet Sci Lett 165:163–176

    Article  Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Understanding oblique impacts from experiments, observations, and modeling. Ann Rev Earth Planet Sci 28:141–167

    Article  Google Scholar 

  • Pilkington M, Grieve RAF (1992) The geophysical signature of terrestrial impact craters. Rev Geophys 30:161–181

    Article  Google Scholar 

  • Pilkington M, Hildebrand A, Ortiz-Aleman C (1994) Gravity and magnetic field modelling and structure of the Chicxulub crater, Mexico. J Geophys Res 99:13147–13162

    Article  Google Scholar 

  • Pilkington M, Jansa LF, Grieve RAF (1995) Geophysical studies of the Montagnais impact crater, Canada. Meteoritics 30:446–450

    Article  Google Scholar 

  • Plescia JB (1996) Gravity investigation of the Manson impact structure, Iowa. In: Koeberl C, Anderson RR (eds) The Manson impact structure, Iowa: Anatomy of an Impact Crater. Geological Society of America Special Paper 302, Boulder, pp 89–104

    Chapter  Google Scholar 

  • Plescia JB, Shoemaker EM, Shoemaker CS (1994) Gravity survey of the Mount Toondina impact structure, South Australia. J Geophys Res 99:13167–13179

    Article  Google Scholar 

  • Poag CW (1996) Structural outer rim of Chesapeake Bay impact crater: Seismic and borehole evidence. Meteorit Planet Sci 31:218–226

    Article  Google Scholar 

  • Poag CW, Poppe LJ (1998) The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater. Mar Geol 145:23–60

    Article  Google Scholar 

  • Pohl J, Stöffler D, Gall H, Ernstson K (1977) The Ries impact crater. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, Tarrytown, pp 343–404

    Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Richardsen G, Vorren TO, Tørudbakken BO (1993) Post-Early Cretaceous uplift and erosion in the southern Barents Sea: a discussion based on analysis of seismic interval velocities. Nor Geologisk Tidsskrift 73:3–20

    Google Scholar 

  • Riches P, Traub-Sobott I, Zimmerle W, Zinkernagel U (1986) Diagenetic peculiarities of potential Lower Jurassic reservoir sandstones, Troms 1 area, off northern Norway, and their tectonic significance. Clay Miner 21:565–584

    Article  Google Scholar 

  • Rider GMH (1991) The geological interpretation of well logs. Whittles Publishing, Caithness, p 175

    Google Scholar 

  • Roddy DJ (1977) Largescale impact and explosion craters: comparisons of morphological and structural analogs. In: Roddy DJ et al (eds) Impact and explosion cratering. Pergamon Press, Tarrytown, pp 185–246

    Google Scholar 

  • Sandbakken PT (2002) A geological investigation of the Mjølnir crater core (7329/03-U-01), with emphasis on shock metamorphosed quartz. Cand Scient (candidatus scietarium) thesis. University of Oslo, Oslo, p 142

    Google Scholar 

  • Sawatzky HB (1977) Buried impact craters in the Williston Basin and adjacent area. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 461–480

    Google Scholar 

  • Schmidt RM, Holsapple KA (1982) Estimates of crater size for large body impact: Gravity scaling results, In: Silver LT, Schultz PH (eds) Geological implications of impacts of large asteroids and comets on Earth. Geological Society of America Special Paper 190, Boulder, pp 93–102

    Chapter  Google Scholar 

  • Schultz PH (1992) Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. J Geophys Res 97:16183–16248

    Article  Google Scholar 

  • Schultz PH (1996) Effect of impact angle on vaporization. J Geophys Res 100:21117–21135

    Article  Google Scholar 

  • Schultz PH, Anderson RR (1996) Asymmetry of the Manson impact structure: evidence for impact angle and direction. In: Koeberl C, Anderson RR (eds) The Manson impact structure, Iowa: anatomy of an impact crater. Geological Society of America Special Paper 302, Boulder, pp 397–417

    Chapter  Google Scholar 

  • Schultz PH, D’Hondt S (1996) Cretaceous-Tertiary Chicxulub impact angle and its consequences. Geology 24:963–967

    Article  Google Scholar 

  • Schultz PH, Gault DE (1990) Prolonged global catastrophes from oblique impacts. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history; An interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America Special Paper 247, Boulder, pp 239–261

    Chapter  Google Scholar 

  • Schultz PH, Gault DE (1992) Recognizing impact signatures in the planetary record [abs] International conference on large meteorite impacts and planetary evolution, Sudbury, Canada. Lunar and Planetary Institute, Houston, Texas, Contribution

    Google Scholar 

  • Sclater JG, Christie RAF (1980) Continental stretching: An explanation of the postmid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Sharpton VL, Grieve RAF (1990) Meteorite impact, cryptoexplosion and shock metamorphism; A perspective on the evidence at the K/T boundary. In: Sharpton VL, Ward PD (eds) Global catastrophies in Earth history; An interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247, Boulder, pp 301–318

    Chapter  Google Scholar 

  • Shoemaker EM (1962) Interpretation of lunar craters. In: Kopal Z (ed) Physics and astronomy of the Moon. Academic Press, New York, pp 283–351

    Google Scholar 

  • Shoemaker EM, Wolfe RF, Shoemaker CS (1990) Asteroid and comet flux in the neighborhood of Earth. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history; An interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America Special Paper 247, Boulder, pp 155–170

    Chapter  Google Scholar 

  • Shuvalov VV, Dypvik H (2004) Ejecta formation and crater development of the Mjølnir impact. Meteorit Planet Sci 39:467–479

    Article  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Skilbrei JR (1993a) An evaluation of magnetic basement determinations from the southwestern Barents Sea. In: Skilbrei JR (ed) Interpretation of geophysical data from the northwestern Barents Sea and Spitsbergen. Dr Ing Thesis. University of Trondheim, Norway, p. 160

    Google Scholar 

  • Skilbrei JR (1993b) Short note: The straight slope method for basement depth determination revisited. Geophysics 58:593–595

    Article  Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001a) Mjølnir (Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsl Stratigr 38:129–140

    Article  Google Scholar 

  • Smith DG, Harland WB, Hughes NF, Pickton CAG (1976) The geology of Kong Karls Land, Svalbard. Geol Mag 113:193–304

    Article  Google Scholar 

  • Sonett CP, Pearce SJ, Gault DE (1991) The oceanic impact of large objects. Adv Space Res 11:77–86

    Article  Google Scholar 

  • Spudis PD (1993) The geology of multiring impact basins. Cambridge University Press, Cambridge, p 263

    Book  Google Scholar 

  • Stöffler D, Ewald U, Ostertag R, Reimold WU (1977) Research drilling Nördlingen 1973, Ries: composition and texture of polymictic impact breccias. Geol Bavarica 75:163–190

    Google Scholar 

  • Sugita S, Schultz PH (2002) Initiation of run-out flows on Venus by oblique impacts. Icarus 155:265–284

    Article  Google Scholar 

  • Talwani M, Heirtzler JR (1964) Computation of magnetic anomalies caused by twodimensional bodies of arbitrary shape. In: Parks GA (ed) Computers in the mineral industries, Part 1. Stanford University Publication. Geol Sci 9:464–480

    Google Scholar 

  • Talwani M, Worzel JL, Landisman M (1959) Rapid gravity computations for twodimensional bodies with application to the Mendocino submarine fracture zone. J Geophys Res 64:49–59

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, p 770

    Book  Google Scholar 

  • Tsikalas F (1992) A study of seismic velocity, density and porosity in Barents Sea wells (N-Norway). Master thesis. University of Oslo, Oslo, p 169

    Google Scholar 

  • Tsikalas F (2005) Mjølnir Ccater as a result of oblique impact: Asymmetry evidence constrains impact direction and angle. In: Koeberl C, Henkel H (eds) Impact tectonism. Impact Studies. Springer, Berlin-Heidelberg, pp 285–306

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI (2004) Nearfield erosional features at the Mjølnir impact crater: The role of marine sedimentary target. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Impact Studies. Springer, Berlin-Heidelberg, pp 39–55

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI (2007) Postimpact structural crater modification due to sediment loading: An overlooked process. Meteorit Planet Sci 42:2013–2029

    Article  Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik H (2002b) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields. Impact Studies. Springer, Berlin-Heidelberg, pp 307–321

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Eldholm O, Faleide JI (1998c) Integrated geophysical analysis supporting the impact origin of the Mjølnir Structure, Barents Sea. Tectonophysics 289:257–280

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110:537–552

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) The anatomy of a buried complex impact structure: The Mjølnir Structure, Barents Sea. J Geophys Res 103:30469–30484

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (1999) Mjølnir Structure, Barents Sea: A marine impact crater laboratory. In: Dressler B, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Special Paper 339, Boulder, pp 193–204

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002a) The Mjølnir marine impact crater porosity anomaly. Deep Sea Res Part II 49:1103–1120

    Article  Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) Impact structures: What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America Special Paper 384, Boulder, pp 1–24

    Chapter  Google Scholar 

  • Vågnes E, Faleide JI, Gudlaugsson ST (1992) Glacial erosion and tectonic uplift in the Barents Sea. Nor Geologisk Tidsskrift 72:333–338

    Google Scholar 

  • Walderhaug O (1992) Magnitude of uplift of the Stø and Nordmela Formations in the Hammerfest Basin – a diagenetic approach. Nor Geologisk Tidsskrift 72:321–323

    Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106:11201–11215

    Article  Google Scholar 

  • Ward SN, Asphaug E (2002) Impact tsunami-Eltanin. Deep Sea Res II 49:1073–1080

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of generic mapping tools released, EOS Trans Am Geophys Union 79(47):579

    Article  Google Scholar 

  • Winzer SR (1972) The Steen River astrobleme, Alberta, Canada. Proc 24th Int Geol Congr Sect 15:148–156

    Google Scholar 

  • Won IJ, Bevis M (1987) Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and fortran subroutines. Geophysics 52:232–238

    Article  Google Scholar 

  • Worsley D, Johansen R, Kristensen SE (1988) The Mesozoic and Cenozoic succession of Tromsøflaket. In: Dalland A, Worsley D, Ofstad K (eds) A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Norwegian Pet Directorate Bull 4:42–65

    Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493

    Article  Google Scholar 

  • Zuber M, Smith DE, Lemoine FG, Neumann GA (1995) The shape and internal structure of the moon from the clementine mission. Science 266:1839–1843

    Article  Google Scholar 

  • Grung-Olsen R, Hanssen OK (1987) Askeladd. In: Spencer AM et al (eds) Geology of Norwegian oil and gas fields. Graham and Trotman, London, pp 420–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Tsikalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsikalas, F., Faleide, J.I., Werner, S.C., Torsvik, T., Gudlaugsson, S.T., Eldholm, O. (2010). Impact Geophysics and Modelling. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_4

Download citation

Publish with us

Policies and ethics