Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Impact cratering is one of the fundamental processes in our planetary system and an important factor in forming the lithosphere of the Earth and the planets. The active surface processes on Earth, e.g. weathering, erosion, plate tectonics, and volcanism change the Earth’s surface continuously. Therefore only a modest number of crater structures have been preserved and discovered on the surface of the Earth, compared to what can be seen on the less disturbed surfaces on the Moon and Mars (Melosh 1989; French 1998; Montanari and Koeberl 2000; Koeberl 2007) (Fig. 1.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asphaug E, Ward S (2002) Impact tsunami, Eltanin. Deep Sea Res Part II 49:1073–1079

    Article  Google Scholar 

  • Beals CS, Halliday I (1967) Impact craters of the Earth and Moon. J R Astron Soc Canada 59:199–216

    Google Scholar 

  • Bergh SG, Grogan P (2003) Tertiary structure of the Sørkapp-Hornsund Region, South Spitsbergen, and implications for the offshore southern extension of the foldthrust Belt. Norwegian J Geol 83:43–60

    Google Scholar 

  • Bremer GMA, Smelror M, Nagy J, Vigran JO (2004) Biotic responses to the Mjølnir meteorite impact, Barents Sea: evidence from a core drilled within the crater. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice, Springer Series in Impact studies. Springer, Berlin-Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Bruhn R, Steel RJ (2003) High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture. J Sediment Res 73(5):745–755

    Article  Google Scholar 

  • Channell JET, Smelror M, Jansen E, Higgins S, Lehman B, Eidvin T, Solheim A (1999) Age models for glacial fan deposits off East Greenland and Svalbard (Sites 986 and Site 987). Proc Ocean Drill Prog Sci Results 162:149–166

    Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous–Tertiary boundary. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Boulder, pp 55–68

    Chapter  Google Scholar 

  • Dallmann WK, Gjelberg JG, Harland WB, Johannessen EP, Keilen HB, Lønøy A, Nilsson I, Worsley D (1999) Upper Palaeozoic lithostratigraphy. In: Dallmann WK (ed) Lithostratigraphic Lexicon of Svalbard. Review and recommendations for nomenclature use. Upper Palaeozoic to Quaternary bedrock. Norsk Polarinstitutt, Tromsø, pp 127–214

    Google Scholar 

  • Dimakis P, Braathen BI, Faleide JI, Elverhøi A, Gudlaugsson ST (1998) Cenozoic erosion and the preglacial uplift of the Svalbard–Barents Sea region. Tectonophysics 300:311–327

    Article  Google Scholar 

  • Dypvik H, Attrep M Jr (1999) Geochemical signals of the late Jurassic, marine Mjølnir impact. Meteorit Planet Sci 34:393–406

    Article  Google Scholar 

  • Dypvik H, Burchell MJ, Claeys P (2004a) Impacts into marine and icy environments. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Springer, Berlin-Heidelberg, pp 1–20

    Chapter  Google Scholar 

  • Dypvik H, Claeys P, Deutsch A, Kyte FT, Matsui T, Smelror M (2008a) Marine impacts and environmental consequences – drilling of the Mjølnir structure, the Barents Sea. Sci Drill 6:55–57

    Article  Google Scholar 

  • Dypvik H, Ferrell RE Jr (1998) Clay mineral alteration associated with a meteoric impact in the marine environment (Barents Sea). Clay Miner 33:51–64

    Article  Google Scholar 

  • Dypvik H, Ferrell RE Jr, Sandbakken PT (2003) The clay mineralogy of sediments related to the marine Mjølnir impact Crater. Meteorit Planet Sci 38:1437–1450

    Article  Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) The Mjølnir structure – an impact crater in the Barents Sea. Geology 24:779–782

    Article  Google Scholar 

  • Dypvik H, Håkansson E, Heinberg C (2002) Jurassic and Cretaceous paleogeography and stratigraphic comparison in the North Greenland–Svalbard regions. Polar Res 21:91–108

    Article  Google Scholar 

  • Dypvik H, Jansa L (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geol 161:309–337

    Article  Google Scholar 

  • Dypvik H, Kalleson E (2010) Marine impacts–mechanisms of early post impact crater sedimentation. In Gibson R, Reimold WU (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper, in press

    Google Scholar 

  • Dypvik H, Mørk A, Smelror M, Sandbakken PT, Tsikalas F, Vigran JO, Bremer GMA, Nagy J, Gabrielsen RH, Faleide JI, Bahiru M, Weiss H (2004b) Impact breccia and ejecta from Mjølnir crater in the Barents Sea – The Ragnarok Formation and Sindre Bed. Nor Geologisk Tidsskrift 84:143–167

    Google Scholar 

  • Dypvik H, Nagy J, Eikeland TA, Backer-Owe K, Andresen A, Haremo P, Bjærke T, Johansen H, Elverhøi A (1991a) The Janusfjellet Subgroup (Bathonian to Hauterivian) on Central Spitsbergen: a revised lithostratigraphy. Polar Res 9(1):21–43

    Article  Google Scholar 

  • Dypvik H, Sandbakken PT, Postma G, Mørk A (2004c) Early postimpact sedimentation around the central high of the Mjølnir impact crater (Barents Sea, Late Jurassic). Sediment Geol 168:227–247

    Article  Google Scholar 

  • Dypvik H, Smelror M, Sandbakken PT, Salvigsen O, Kalleson E (2006) Traces of the marine Mjølnir impact event. Palaeogeogr Palaeoclimatol Palaeoecol 241:621–634

    Article  Google Scholar 

  • Dypvik H, Wolbach WS, Shuvalov V, Weaver SLW (2008b) Did the Mjølnir asteroid impact ignite Barents Sea hydrocarbon source rocks? In: Evans KR, Horton JW Jr, King DT Jr, Morrow JR (eds) The Sedimentary record of meteorite impacts. Geological Society of America Special Paper 437, Boulder, pp 65–72

    Google Scholar 

  • Dypvik H, Zakharov V (2010) Mechanisms of late synimpact to early postimpact crater sedimentation in marine-target impact structures. In: Gibson RL, Reimold WU (eds) Large meteorite impacts and planetary evolution IV. Geological Society of America Special Paper 465: 301–318

    Google Scholar 

  • Eidvin T, Jansen E, Riis F (1993) Chronology of Tertiary fan deposits off the western Barents Sea: implications for the uplift and erosion history of the Barents Shelf. Mar Geol 112:109–131

    Article  Google Scholar 

  • Eldholm O, Myhre AM, Thiede J (1994) Cenozoic tectonomagmatic events in the North Atlantic: potential paleoenvironmental implications. In: Boulter MC, Fischer HC (eds) Cenozoic plants and climates of the arctic, NATO ASI Series, 127. Springer, Heidelberg, pp 35–55

    Chapter  Google Scholar 

  • Engen Ø, Faleide JI, Dyreng TK (2008) Opening of the fram strait gateway: a review of plate tectonic constraints. Tectonophysics 450:51–69

    Article  Google Scholar 

  • Faleide JI, Vågnes E, Gudlaugsson ST (1993) Late Mesozoic-Cenozoic evolution of the southwestern Barents Sea in a rift shear tectonic setting. Mar Pet Geol 10:186–214

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shockmetamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Iinstitute Contribution No 954, Lunar and Planetary Institute, Houston, p 120

    Google Scholar 

  • Gee DG, Tebenkov AM (2004) Svalbard a fragment of the Laurentian margin. In: Gee DG and Pease V (eds) The Neoproterozoic Timanide Orogen and Eastern Baltica. Geol Soc Mem 30:101–206, 255

    Google Scholar 

  • Glimsdal S, Pedersen G, Shuvalov VV, Dypvik H, Langtangen HP, Kristiansen Ø (2005) Tsunami generated by the Mjølnir impact [abs]. Lunar Planet Sci Conf 34, abs #1287

    Google Scholar 

  • Glimsdal S, Pedersen GK, Langtangen HP, Shuvalov V, Dypvik H (2007) Tsunami generation and propagation from the Mjølnir asteroid impact. Meteorit Planet Sci 42:1473–1493

    Article  Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294

    Article  Google Scholar 

  • Harland WB (1969) Contribution of Spitsbergen to understanding of the tectonic eveolution of the North Atlantic region. In: Kay M (ed) North Atlanticgeology and continental drift. Am Assoc Pet Geol Mem 12:817–851

    Google Scholar 

  • Harland WB (1971) Tectonic transpression in Caledonian Spits-bergen. Geol Mag 108:27–42

    Article  Google Scholar 

  • Henkel H, Reimold WU, Koeberl C (2002) Magnetic and gravity model of the Morokweng impact structure. J Appl Geophys 49:129–147

    Article  Google Scholar 

  • Håkansson E, Birkelund T, Heinberg C, Hjort C, Mølgaard P, Pedersen SAS (1993) The Kilen Expedition 1985. Bull Geol Soc Denmark 40:9–32

    Google Scholar 

  • Håkansson E, Heinberg C, Madsen L, Mølgaard S, Pedersen SAS, Piasecki S, Rasmussen JA, Stemmerik L, Zinck-Jørgensen K (1994) Wandel Sea Basin: basin analyses – Project summary. Scientific Report 1, University of Copenhagen, Denmark, p 11

    Google Scholar 

  • Jansa LF, Pe-Piper G, Robertson BP, Friedenreich O (1989) Montagnais: A submarine impact structure on the Scotian shelf, eastern Canada. Geol Soc Am Bull 101:450–463

    Article  Google Scholar 

  • Johnsen SO, Mørk A, Dypvik H, Nagy J (2001) Outline of the geology of Svalbard. NGF Abstr Proc Norwegian Geol Soc 1:93–112

    Google Scholar 

  • Kieffer SW, Simonds CH (1980) The role of volatiles and lithology in the impact cratering processes. Rev Geophys 18:143–181

    Article  Google Scholar 

  • Koeberl C (2007) The geochemistry and cosmochemistry of impacts. In: Davis A (ed) Treatise on Geochemistry, vol 1. Elsevier, Pergamon, pp. 1.28.1–1.28.52

    Google Scholar 

  • Koeberl C, Armstong RA, Reimold WU (1997a). Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age. Geology 25:731–734

    Article  Google Scholar 

  • Korycansky DG, Asphaug E, Ward SN (2003) Impact tsunami calculations hydrodynamical simulations vs linear theory[abs]. Lunar Planet Sci Conf 34, abs #1195, CD ROM

    Google Scholar 

  • Langenhorst F, Dypvik H (1996) Microstructural characteristics of shocked quartz from ejecta of the submarine Mjølnir impact structure, Barents Sea [abs]. Lunar Planet Sci Conf 27, abs # 1364, CD ROM

    Google Scholar 

  • Lawver LA, Müller RD, Srivastava SP, Roest W (1990) The opening of the Arctic Ocean. In: Bleil U, Thiede J (eds) Geological history of the polar ocean. Klüwer Academic Publishers, Netherlands, pp 29–62

    Chapter  Google Scholar 

  • Lindström M, Sturkell EFF, Törnberg R, Ormö J (1996) The marine impact crater at Lockne, central Sweden. Geologiska Fören Förhandlinger 118:193–206

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Milton DJ, Glikson AY, Brett R (1996) Gosses Bluff – a latest Jurassic impact structure, central Australia. Part 1: Geological structure, stratigraphy and origin. J Aust Geol Geophys 16:453–486

    Google Scholar 

  • Montanari A, Koeberl C (2000) Impact stratigraphy-The Italian record. Springer, Berlin-Heidelberg, p 364

    Google Scholar 

  • Morgan JV, Warner MR (1999) The third dimension of a multiring impact basin. Geology 26:407–410

    Article  Google Scholar 

  • Mørk A, Dallmann WK, Dypvik H, Johannessen EP, Larssen GB, Nagy J, Nøttvedt A, Olaussen S, Pcelina TP, Worsley D (1999) Mesozoic lithostratigraphy. In: Dallmann WK (ed) Lithostratigraphic Lexicon of Svalbard. Review and recommendations for nomenclature use. Upper Paleozoic to Tertiary. Norsk Polarinstitutt, Tromsø, pp 127–214

    Google Scholar 

  • Nøttvedt A, Cecchi M, Gjelbjerg JG, Kristensen SE, Lønøy A, Rasmussen A, Rasmussen E, Skott PH, van Veen PM (1993) Svalbard-Barents Sea correlation: A short review. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:363–375

    Google Scholar 

  • Nyland B, Jensen LN, Skagen J, Skarpnes P, Vorren TO (1992) Tertiary uplift and erosion in the Barents Sea: Magnitude, timing, and consequences. In: Structural and tectonic modeling and its application to the petroleum geology. Norwegian Pet Soc Spec Publ 1:153–162

    Google Scholar 

  • Ormö J, Lindström M (2000) When a cosmic impact strikes the seabed. Geol Mag 137:67–80

    Article  Google Scholar 

  • Otha Y (1994) Caledonian and Precambrian history of Svalbard: A review and an implication of excape tectonics. Tectonophysics 231:183–194

    Article  Google Scholar 

  • Pilkington M, Jansa LF, Grieve RAF (1995) Geophysical studies of the Montagnais impact crater, Canada. Meteoritics 30:446–450

    Article  Google Scholar 

  • Poag CW, Koeberl C, Reimold WU (2004) The Chesapeake Bay crater: Geology and geophysics of a Late Eocene submarine impact structure. Springer, Berlin-Heidelberg, p 522

    Book  Google Scholar 

  • Robin E, Rocchia R, Siret D, Dypvik H (2001) Discovery of nickel iron particles in the ejecta bearing strata of the latest Jurassic Mjølnir meteorite impact (Barents Sea). Norwegian Geol Soc Abstr Ser 1:67–68

    Google Scholar 

  • Sættem J, Bugge T, Fanavoll S, Goll RM, Mørk A, Mørk MBE, Smelror M, Verdenius J (1994) Cenozoic margin development and erosion of the Barents Sea: Core evidence from southwest of Bjørnøya. Mar Geol 118:257–281

    Article  Google Scholar 

  • Sandbakken PT (2002) A geological investigation of the Mjølnir crater core (7329/03-U-01), with emphasis on shock metamorphosed quartz. Cand Scient (candidatus scietarium) thesis. University of Oslo, Oslo, p 142

    Google Scholar 

  • Sandbakken P, Langenhorst F, Dypvik H (2005) Shock metamorphism of quartz at the submarine Mjølnir impact crater, Barents Sea. Meteorit Planet Sci 40:1363–1375

    Article  Google Scholar 

  • Shuvalov VV, Dypvik H (2004) Ejecta formation and crater development of the Mjølnir impact. Meteorit Planet Sci 39:467–479

    Article  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Skogseid J, Planke S, Faleide JI, Pedersen T, Eldholm O, Neverdal F (2000) NE Atlantic continental rifting and volcanic margin formation. In: Nøttvedt A, Larsen BT (eds) Dynamics of the Norwegian Margin. Geol Soc Spec Publ 167:295–326

    Google Scholar 

  • Smelror M, Dypvik H (2005) Dinoflagellate cyst and prasinophyte biostratigraphy of the Volgian-Ryazanian boundary strata, western Barents Shelf. Nor Geologiske Undersøkelse Bull 443:61–69

    Google Scholar 

  • Smelror M, Dypvik H (2006) The sweet aftermath: Environmental changes and biotic restoration following the marine Mjølnir impact (Volgian-Ryazanian boundary strata, Barents Shelf). In: Cockell C, Koeberl C, Gilmour I (eds) Biological processes associated with impact events. Springer, Berlin-Heidelberg, pp 143–178

    Chapter  Google Scholar 

  • Smelror M, Dypvik H, Mørk A (2002) Phytoplankton blooms in the Jurassic Cretaceous boundary beds of the Barents Sea possibly induced by the Mjølnir impact. In Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Lecture notes in Earth Sciences, Impact Studies. Springer, Berlin-Heidelberg, pp 69–81

    Chapter  Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001a) Mjølnir (Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsl Stratigr 38:129–140

    Article  Google Scholar 

  • Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Ann Rev Earth Planet Sci 27:75–113

    Article  Google Scholar 

  • Solheim A, Andersen ES, Elverhøi A, Fiedler A (1996) Late Cenozoic depositionnal history of the western Svalbard continental shelf, controlled by subsidence and climate. Glob Planet Change 12:135–148

    Article  Google Scholar 

  • Steel RJ, Gjelberg J, Helland-Hansen W, Kleinsphen K, Nødtvedt A, Rye Larsen M (1985) The Tertiary strikeslip basins and orogenic belt of Spitsbergen. In: Biddle KT, Christie-Blick N (eds) Strikeslip deformation, basin formation and sedimentation. Soc Econ Paleontol Mineral Spec Publ 37:339–359

    Google Scholar 

  • Stewart DJ, Berge K, Bowlin B (1995) Exploration trends in the Southern Barents Sea. In: Hanslien S (ed) Petroleum exploration and exploitation in Norway. Norwegian Pet Soc Spec Publ 4:253–276.

    Google Scholar 

  • Suuroja K, Suuroja S, All T, Floden T (2002) Kärdla (Hiiumaa Island, Estonia) – the buried and well-preserved Ordovician marine impact structure. Deep Sea Res Part II 49:1121–1144

    Article  Google Scholar 

  • Torsvik T, Van der Voo R, Redfield TF (2002) Relative hotspot motions versus true polar wander. Earth Planet Sci Lett 202:185–200

    Article  Google Scholar 

  • Tsikalas F, Faleide JI (2004) Nearfield erosional features at the Mjølnir impact crater: The role of marine sedimentary target. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice. Impact Studies. Springer, Berlin-Heidelberg, pp 39–55

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110:537–552

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998b) The anatomy of a buried complex impact structure: The Mjølnir Structure, Barents Sea. J Geophys Res 103:30469–30484

    Article  Google Scholar 

  • Vorren TO, Laberg JS (2001) Late Quaternary sedimentary processes and environment on the Norwegian-Greenland Sea continental margins. In: Martinsen OJ, Dreyer T (eds) Sedimentary evironments offshore Norway – Paleozoic to Recent. Norsk Petroleumsforening Special Publication pp 451–456

    Google Scholar 

  • Wolbach WS, Widicus S, Dypvik H (2001) A preliminary search for evidence of impact-related burning near the Mjølnir impact structure, Barents Sea [abs] Lunar Planet Sci Conf 32, abs #1332, CD-ROM

    Google Scholar 

  • Worsley D (2008) The post-Caledonian development of Svalbard and the western Barents Sea. Polar Res 27:298–317

    Article  Google Scholar 

  • Worsley D, Aga O (1986) Evolution of an arctic archipelago – The geological history of Svalbard. Statoil, Norway, p 121

    Google Scholar 

  • Zakharov VA, Lapukhoy AS, Shenfil OV (1993) Iridium anomaly at the Jurassic-Cretaceous boundary in northern Siberia. Russian J Geol Geophys 34:83–90

    Google Scholar 

  • Smelror M, Petrov OV, Larssen GB, Werner SC (2009) Geological history of the Barents sea. Geological survey of Norway, Trondheim, p 135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Dypvik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dypvik, H., Smelror, M., Mørk, A., Tsikalas, F. (2010). Introduction. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_1

Download citation

Publish with us

Policies and ethics