Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T02:04:47.063Z Has data issue: false hasContentIssue false

Pollen-Derived Rainfall and Temperature Estimates from Lake Tanganyika and Their Implication for Late Pleistocene Water Levels

Published online by Cambridge University Press:  20 January 2017

Annie Vincens
Affiliation:
Géologie du Quaternaire, CNRS Case 907, 13288 Marseille Cedex 9, France Botanique Historique et Palynologie, St Jérôme, 13397 Marseille Cedex 13, France URA 1278 "Domaines Océaniques," Université de Bretagne Occidentale, UFR Sciences et Techniques, B.P. 452, 29275 Brest Cedex, France
Françoise Chalié
Affiliation:
Géologie du Quaternaire, CNRS Case 907, 13288 Marseille Cedex 9, France Botanique Historique et Palynologie, St Jérôme, 13397 Marseille Cedex 13, France URA 1278 "Domaines Océaniques," Université de Bretagne Occidentale, UFR Sciences et Techniques, B.P. 452, 29275 Brest Cedex, France
Raymonde Bonnefille
Affiliation:
Géologie du Quaternaire, CNRS Case 907, 13288 Marseille Cedex 9, France Botanique Historique et Palynologie, St Jérôme, 13397 Marseille Cedex 13, France URA 1278 "Domaines Océaniques," Université de Bretagne Occidentale, UFR Sciences et Techniques, B.P. 452, 29275 Brest Cedex, France

Abstract

Palaeoclimatic estimates of mean annual temperature and rainfall in the southern Tanganyika basin between 25,000 and 9000 yr B.P. have been established from two pollen sequences based on the best-analogue method. The results give evidence of a mean temperature decrease of about 4.2°C during the last glaciation, a value consistent with that previously obtained in the catchment area on the Burundi Highlands. This cooling was synchronous with a decrease of mean annual precipitation of about 180 mm/yr. Postglacial climatic conditions were established by 12,700 yr B.P., with warming and wetness continuing to increase from this date onward. These new palaeoclimatic data will be useful for hydrological reconstructions of Lake Tanganyika, particularly during the last glacial age for which the magnitude of water-level fall has been a controversial issue; our rainfall estimates are more consistent with low values (-250 to -300 m fall) than with high ones (-600 m) previously proposed.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, W. H. (1985). On the timescale of deglaciation: Atlantic deep sea sediments and Gulf of Mexico. Palaeogeography Palaeoclima-tology Palaeoecology 50, 167184.Google Scholar
Bonnefille, R. Roeland, J. C, and Guiot, J. (1990). Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature (London) 346, 347349.Google Scholar
Bonnefille, R. Chalié, F. Guiot, J., and Vincens, A. (1992). Quantitative estimates of full glacial temperatures in Equatorial Africa from palynological data. Climate Dynamics 6, 251257.Google Scholar
Capart, A. (1949). Sondages et carte bathymétrique. Exploration hy-drobiologique du lac Tanganyika (1946-1947). Institut Royal des Sciences Naturelles de Belgique 2, 116.Google Scholar
Chalie, F. (1992). “‘Paléoclimatologie quantitative en Afrique orientale depuis 40 000 ans. Pollen et statistiques.” Unpublished thesis, Université d’Aix-Marseille III.Google Scholar
Ernst, V. W. (1971). Zur Okologie der Miombo-Wälder. Flora 160, 317331.CrossRefGoogle Scholar
Gasse, F Lédée, V. Massault, M., and Fontes, J. C. (1989). Water-level fluctuations of lake Tanganyika in phase with oceanic changes during the last gtaciation and deglaciation. Nature (London) 342, 5759.Google Scholar
Guiot, J. (1990). Methodology of the last climatic cycle reconstruction from pollen data. Palaeogeography Palaeoclimatology Palaeoecology 80, 4969.CrossRefGoogle Scholar
Guiot, J. Reille, M. Beaulieu de, J. L., and Pons, A. (1992). Calibration of the climatic signals in a new pollen sequence from La Grande Pile. Climate Dynamics 6, 259264.Google Scholar
Haberyan, K. A., and Hecky, R. E. (1987). The Late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeography Palaeoclimatology Palaeoecology 61, 169197.Google Scholar
Hastenrath, S., and Kutzbach, J. E. (1983). Paleoclimatic estimates from water and energy budgets of East African lakes. Quaternary Research 19, 141153.Google Scholar
Hecky, R. E., and Degens, E. T. (1973). “Late Pleistocene-Holocene Chemical Stratigraphy and Palaeolimnology of the Rift Valley Lakes of Central Africa.” Unpublished technical report 73-28, Woods Hole Oceanographtc Institution.Google Scholar
Hedberg, O. (1951). Vegetation Belts of the East African mountains. Svensk Botanisk Tidskrift 45, 140202.Google Scholar
Hillaire-Marcel, C Aucour, A. M. Bonnefille, R. Riollet, G. Vin-cens, A. and Williamson, D. (1989). l3C/palynological evidences of differential residence time of organic carbon prior to its sedimentation in East African Rift lakes and peat bogs. Quaternary Science Reviews 8, 207212.CrossRefGoogle Scholar
Langbein, W. B. (1961). “Salinity and Hydrology of Closed Lakes.” U.S. Geological Survey.CrossRefGoogle Scholar
Lawton, R. M. (1978). A study of the dynamic ecology of Zambian vegetation. Journal of Ecology 66, 175198.CrossRefGoogle Scholar
Livingstone, D. A. (1965). Sedimentation and the history of water level change in lake Tanganyika. Limnology and Oceanography 10, 607610.CrossRefGoogle Scholar
Mondeguer, A. (1991). “Bassins sétiimentaires en contexte extensif et décrochant: l’exemple du “complexe des Fossés Sud Tanganyika,” Rift Est Africain. Morphostructures et sédimentation.” Unpublished thesis, Université de Brest.Google Scholar
Mondeguer, A. Ravenne, C Masse, P., and Tiercelin, J. J. (1989). Sedimentary basins in an extension and strike-slip background: The “South Tanganyika troughs complex,” East African Rift. Bulletin de la Société géologique de France 8, 501522.Google Scholar
Roeland, J. C Guiot, J., and Bonnefille, R. (1988). Pollen et recon-struction quantitative du climat. Validation des données d’Afrique orientale. Comptes Rendus de l’Académic des Sciences (Paris) Series 2 307, 17351740.Google Scholar
Roeland, J. C. (1990). “Pollen et reconstitution paléoclimatique quantitative en Afrique Centre-Orientale.” Unpublished thesis, Université de Paris VI.Google Scholar
Street-Perrott, F. A. Marchand, D. S. Roberts, N., and Harrison, S. P. (1989). “Global lake-level variations from 18,000 to 0 years ago: A palaeoclimatic analysis.” C02, Office of Energy Research, Washington.Google Scholar
Tiercelin, J. J. Mondeguer, A. Gasse, F. Hillaire-Marcel, C Hoffert, M. Larque, P. Lédée, V. Marestang, P. Ravenne, C Raynaud, J. F. Thouveny, N. Vincens, A., and Williamson, D. (1988). 25 000 ans d’histoire hydrologique et sédimentaire du lac Tanganyika, Rift Est-africain. Comptes Rendus de l’Académie des Sciences {Paris) Series 2 307, 13751382.Google Scholar
Tiercelin, J. J. Scholz, C. A. Mondeguer, A. Rosendahl, B. R., and Ravenne, C. (1989). Discontinuités sismiques et sédimentaires dans la série de remplissage du fossé du Tanganyika, Rift Est-africain. Comptes Rendus de l’Académie des Sciences (Paris) Series 2 309, 15991606.Google Scholar
Tiercelin, J. J., and Mondeguer, A. (1991). The geology of the Tan-ganyika Trough. In “Lake Tanganyika and Its Life” (Coulter, G. W., Ed.), pp. 448. Natural History Museum Publications and Oxford Univ. Press.Google Scholar
Van Zinderen Bakker, E. M. (1970). Observations on the distribution of Ericaceae in Africa. In “Argumenta geographicum, festschrift C. Troll zum 70” (Lauer, W., Ed.), pp. 8997. Geburtstag, Geographi-schen Institut der Universitat Bonn (Colloquium Geographicum).Google Scholar
Vincens, A. (1982). “Palynologie, environnements actuels et pliopléistocènes à l’Est du lac Turkana (Kenya).” Unpublished thesis, Université d’Aix-Marseille II.Google Scholar
Vincens, A. (1989a). Paléoenvironnements du bassin Nord-Tanganyika (Zaire, Burundi, Tanzanie) au cours des 13 derniers mille ans: apport de la palynologie. Review of Paleobotany and Palynology 61, 6988.Google Scholar
Vincens, A. (1989b). Les forêts claires zambéziennes du bassin Sud-Tanganyika. Evolution entre 25 000 et 6000 ans B.P. Comptes Rendus de I’Académie des Sciences (Paris) Series 2 308, 809814.Google Scholar
Vincens, A. (1991). Late Quaternary vegetational history of the South-Tanganyika basin. Climatic implications in south-central Africa. Palaeogeography Palaeoclimatology Palaeoecology 86, 207226.CrossRefGoogle Scholar
White, F. (1978). The Afromontane Region. In “Biogeography and Ecology of Southern Africa” (Werger, M. J. A., Ed.), pp. 463513. Junk, The Hague.CrossRefGoogle Scholar
White, F. (1983). “The Vegetation Map of Africa.” UNESCO, Paris.Google Scholar
Williamson, D. Thouveny, N. Hillaire-Marcel, C. Mondeguer, A. Taieb, M. Tiercelin, J. J., and Vincens, A. (1991). Chronological potential of palaeomagnetic oscillations recorded in Late Quaternary sediments from lake Tanganyika. Quaternary Science Reviews 10, 351361.Google Scholar